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1. Introduction 

Mechanical engineering (ME) serves as a foundational discipline for global infrastructure, energy production, 

manufacturing, and transportation systems. Historically, advancements in ME have been driven by empirical 

experimentation, followed by the adoption of analytical modeling, and later, powerful computational tools such 

as Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD). The current era, often termed 

the Fourth Industrial Revolution (4IR), marks a profound convergence of physical and digital technologies, 

wherein data, connectivity, and computational intelligence fundamentally reshape the engineering workflow. 

This convergence relies heavily on the capabilities of Artificial Intelligence (AI) and Machine Learning (ML) 

to process the massive volumes of data generated by the Internet of Things (IoT) sensors, manufacturing 

systems, and high-fidelity simulations. The adoption of AI/ML enables mechanical engineers to tackle 

problems previously deemed computationally or analytically intractable [1]. These methods facilitate the 

transition from optimizing an existing design or process to generating entirely new solutions based purely on 
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desired performance criteria paradigm known as inverse design [11]. This transformation is not merely an 

improvement in tool speed; it represents a fundamental change in how engineering knowledge is acquired, 

represented, and utilized, pushing the boundaries of innovation toward smarter, more efficient, and more 

sustainable systems. 

While the recent growth of AI in engineering appears sudden, ML techniques have been applied in specific 

fields of materials science and engineering since the early 1960s [18]. However, the current explosive growth 

is attributed to three synergistic factors: the widespread availability of high-performance computing resources 

(particularly Graphics Processing Units, or GPUs), the generation of massive, high-quality datasets, and 

significant algorithmic breakthroughs, primarily in Deep Learning (DL). DL architectures, characterized by 

multiple layers of interconnected nodes, can automatically learn hierarchical features directly from raw data, 

overcoming the reliance on manual feature engineering that limited earlier ML approaches. This maturation 

has allowed AI to permeate critical engineering functions. For instance, the Materials Genome Initiative (MGI) 

has been significantly accelerated by AI systems that drive optimization and discovery by analyzing large 

datasets [17]–[19]. Similarly, the adoption of DL in manufacturing has transitioned quality control from 

reactive inspection to real-time, adaptive process optimization [3]. The synthesis presented in this review 

demonstrates that AI/ML is moving beyond specialized applications to become an indispensable, generalized 

toolkit for the modern mechanical engineer. The rapid growth of this field is evidenced by a major review 

identifying over 14,000 related publications since 2016 [20]. 

For the purposes of this review, it is essential to clearly delineate the core concepts of AI, ML, and DL, and to 

introduce the key algorithmic families relevant to mechanical systems: 

1. Artificial Intelligence (AI): The broadest concept, referring to the capability of a machine to imitate 

intelligent human behavior, encompassing reasoning, problem-solving, planning, and learning. 

2. Machine Learning (ML): A subset of AI where systems learn from data, identify patterns, and make 

decisions with minimal explicit programming. 

3. Deep Learning (DL): A subset of ML utilizing deep neural networks (DNNs) with multiple hidden 

layers, capable of modeling highly complex, nonlinear relationships and automatically extracting 

sophisticated features from unstructured data (e.g., sensor signals, images, or simulation results). 

Key algorithmic families applied in ME include: 

• Supervised Learning: Training models (such as Convolutional Neural Networks, CNNs, and 

Recurrent Neural Networks, RNNs/LSTMs) on labeled data to predict outcomes (classification or 

regression), widely used for Remaining Useful Life (RUL) estimation and material property 

prediction. 

• Unsupervised Learning: Identifying hidden patterns or clusters in unlabeled data, crucial for real-

time anomaly detection and condition monitoring. 

• Reinforcement Learning (RL): Training agents to make sequential decisions in an environment to 

maximize a cumulative reward, essential for dynamic system control, production scheduling [21], and 

robotics [22]. 

• Physics-Informed Neural Networks (PINNs): A hybrid approach where the architecture or loss 

function of a neural network is constrained by governing physical equations (e.g., Partial Differential 

Equations, PDEs), ensuring solutions are physically consistent, particularly useful in computational 

mechanics [6]. 

The following table 1 organizes these paradigms with their primary functions within mechanical engineering 

domains: 
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Table 1: AI/ML Paradigms and Core Mechanical Engineering Applications 

AI/ML Paradigm Core Mechanical Engineering 

Application 

Primary 

Function/Benefit 

Supervised Learning (e.g., CNN, 

LSTM) 

Remaining Useful Life (RUL) 

Estimation, Material Property 

Prediction, Quality Inspection 

Prediction of failure 

time/properties, 

classification of defects. 

Unsupervised Learning (e.g., 

Anomaly Detection) 

Real-time Condition Monitoring, 

Process State Identification 

Discovering hidden 

patterns, flagging novel 

anomalous behaviors. 

Reinforcement Learning (RL) Dynamic System Control, Robotic 

Path Planning 22, Production 

Scheduling 21 

Real-time optimization, 

sequential decision-

making in dynamic 

environments. 

Physics-Informed Neural 

Networks (PINNs) 

Computational Fluid Dynamics 

(CFD), Structural Mechanics 

(PDE Solving) 

Creating fast, physically 

consistent surrogate 

models, inverse problem 

solving.6 

 

This literature review provides a rigorous analysis of peer-reviewed scientific literature to synthesize the role 

of AI/ML in mechanical engineering. The review focuses on publications primarily from the last decade, 

reflecting the acceleration caused by DL technologies. The synthesis is structured around five critical domains, 

each representing a distinct phase in the mechanical engineering lifecycle: (A) Design and Generative 

Engineering, (B) Smart Manufacturing and Process Optimization, (C) Prognostic Health Management and 

Predictive Maintenance, (D) Control Systems and Dynamic Systems, and (E) Computational Mechanics and 

Advanced Simulation, including Materials Science. The subsequent Discussion section critically analyzes the 

interdisciplinary synergies and prevailing challenges, such as model interpretability and the need for robust 

deployment strategies, before outlining future research trajectories. 

2. Methods 

The literature search was executed using systematic methodologies adhering to academic standards, utilizing 

primary engineering and computer science databases, including IEEE Xplore, ScienceDirect, Web of Science, 

and PubMed Central. The search queries combined broad domain terms with specific AI/ML techniques 

relevant to mechanical engineering applications. Core keywords and phrases included "AI Mechanical 

Engineering," "Deep Learning Topology Optimization," "PINN fluid dynamics," "PHM machine learning," 

"Reinforcement Learning Control Systems," and "Materials Informatics." Boolean operators were employed 

to ensure comprehensive coverage, focusing on the intersection of advanced AI methodologies and critical 

mechanical system functions. 

The review prioritized peer-reviewed journal articles, high-impact scientific reviews, and conference 

proceedings to ensure the validity and rigor of the synthesized findings. A temporal filter was primarily applied 

to include literature published within the last five to ten years, specifically to capture the advancements brought 

about by the emergence of deep learning, which accelerated research output significantly. Sources focusing 

purely on theoretical computer science without demonstrated engineering application, or those lacking 

empirical validation or comparative analysis, were excluded. Emphasis was placed on literature that provided 

explicit data, performance comparisons, or detailed methodological descriptions pertinent to mechanical 

engineering problems. 

The collected literature was organized thematically based on the five defined domains of mechanical 
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engineering. The synthesis process involved a multi-layered analysis. First, the demonstrated potential and 

technical capabilities of the AI/ML application (e.g., accuracy, speedup, material efficiency) were quantified 

based on reported metrics. Second, a critical analysis was performed to identify knowledge gaps, such as the 

discrepancy between laboratory performance and real-world industrial adoption, and the necessity for physical 

constraints (e.g., in PINNs). The synthesis framework focused on the underlying algorithmic necessity for each 

application; for example, analyzing why a hybrid CNN-LSTM structure is superior for prognostic tasks [7], 

[9] or why evolutionary algorithms must be integrated with reinforcement learning for stable control [12]. This 

rigorous approach ensured the report moved beyond merely listing applications to providing a nuanced 

understanding of the fundamental scientific and engineering challenges being addressed by AI/ML. For 

instance, the systematic mapping of research in mechanism synthesis highlights the necessity of using 

standardized datasets to allow for comparative analysis of different ML algorithms [23], [24]. 

 

3. Thematic Review of Literature (TROL) 

A. AI in Mechanical Design and Generative Engineering 

1. AI Integration in Computer-Aided Design (CAD) and Automation 

The traditional computer-aided design (CAD) paradigm relies on iterative manual input and subsequent 

computational validation (simulation). AI is fundamentally changing this workflow by transforming CAD from 

a static modeling tool into a dynamic, real-time design assistant [25]. Modern CAD environments, including 

commercial platforms such as SolidWorks, Autodesk Fusion 360, and Siemens NX, are increasingly 

integrating ML algorithms to assist in design creation and refinement [20], [25]. These tools enable engineers 

to input high-level functional and performance parameters, which the AI then utilizes to generate structurally 

sound configurations [25]. This automation dramatically reduces the development time required for initial 

concept iterations and minimizes material waste by efficiently distributing material early in the design phase. 

Beyond generating basic shapes, AI enhances three-dimensional (3D) modeling by automatically detecting 

potential design flaws, suggesting corrective measures, and streamlining the transition from concept to 

prototype [25]. AI also facilitates simulation-driven design, where digital prototypes undergo continuous stress 

analysis and virtual testing under varied conditions to guarantee reliability before any physical production 

begins [21], [25]. 

 

2. Topology Optimization (TO) and Generative Design (GD) using Deep Learning 

Generative engineering, particularly the combination of Topology Optimization (TO) and Generative Design 

(GD), is a major beneficiary of deep learning advancements [26], [20]. This combined framework is especially 

powerful when utilized for components intended for Additive Manufacturing (AM). DL models, notably 

Convolutional Neural Networks (CNNs), are highly effective in handling the high-dimensional spatial data 

intrinsic to TO problems, such as boundary conditions, load distribution, and material density [2]. 

The power of integrating DL with TO and GD lies in its ability to explore vast, complex design spaces that 

were previously intractable for human designers [27], [2]. Generative deep learning models process large 

datasets to identify subtle patterns in design parameters, allowing them to create novel AM structures that 

exhibit superior material efficiency and structural integrity compared to designs generated through 

conventional methods [27]. For example, the use of Conditional Generative Adversarial Networks (GANs) has 

led to non-iterative TO methods that achieve high pixel-wise accuracy of 83.15%. This predictive capability 

significantly reduces iterative design cycles, generating numerous optimal design candidates in a fraction of 

the time required by traditional iterative methods. 

To address the inherent computational cost of training and validating DL models within the optimization loop, 

researchers have introduced "theory-driven" mechanisms, such as adaptive sampling. This technique aims to 

reduce computational overhead by prioritizing training data points (optimization problem sets) where the 

predicted topology deviates most significantly from established optimality conditions for TO. By linking the 

data-driven prediction mechanism back to physical optimality criteria, this method ensures the model provides 

better predictions of optimal structural compliance for unseen loading scenarios, achieving engineering validity 

while optimizing computational budget. Furthermore, deep learning models can reduce production time in AM 

from 50 hours to 30 hours and increase waste reduction by 20% compared to non-DL methods. 
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3. Inverse Design and Advanced Generative Models 

The utilization of advanced generative models, such as Generative Adversarial Networks (GANs) and 

Variational Autoencoders (VAEs), is central to the movement toward inverse design [11]. Inverse design 

represents a paradigm shift where the engineer inputs the desired performance metrics (e.g., stiffness, thermal 

conductivity, frequency response), and the AI system outputs the optimal physical geometry necessary to 

achieve those metrics [11]. This contrasts sharply with the traditional forward design loop where a geometry 

is defined and then analyzed for performance. 

The applications of this inverse design methodology are diverse, classifying research findings across eight key 

industry sectors, including aerospace, architecture, automotive, consumer goods, industrial equipment, and 

robotics. For example, in the automotive sector, inverse design is crucial for generating lightweight yet robust 

structural components that meet stringent crash safety standards while minimizing material usage. 

 

4. Mechanism Synthesis and Kinematic Analysis 

Mechanism synthesis, the process of designing mechanical linkages to achieve specific motion requirements, 

is another domain seeing rapid augmentation through ML [23]. Recent literature demonstrates promising 

results using deep neural networks for the synthesis of planar mechanisms [23]. By learning the complex 

relationships between kinematic input parameters and geometric output configurations, ML algorithms can 

efficiently propose viable mechanisms for target path generation [23]. 

However, the analysis of current research, often conducted following systematic review protocols like 

PRISMA, reveals several critical gaps that must be addressed for broader adoption [23]. First, most existing 

models focus heavily on simple target paths and often neglect crucial real-world design requirements, such as 

desired velocities, transmission angles, and other complex design constraints [23]. Second, research frequently 

limits learning to a few selected mechanism types. For ML to be effective in real-world applications, the 

mechanism type itself must be an output of the synthesis process, not a predefined input [23]. Furthermore, the 

field requires the creation and utilization of standardized, labeled datasets of mechanisms to allow for 

meaningful comparison of different ML algorithms and to benchmark performance [23], [24]. Successfully 

addressing these gaps requires a concerted effort to shift the focus from simple kinematic learning to the 

generation of mechanisms based on comprehensive, real-world motion task requirements, ensuring that the 

generated mechanisms are robust and practically manufacturable. 

 

B. AI in Smart Manufacturing and Process Optimization 

1. AI for Real-time Quality Control and Defect Detection 

Artificial intelligence has emerged as a transformative technology in high-tech manufacturing, specifically 

revolutionizing quality control and process optimization [3], [26]. Quality control, traditionally relying on 

manual checks or fixed statistical process control, is now being managed by AI-powered real-time monitoring 

systems. These systems continuously assess production processes using technologies like computer vision and 

sensor fusion to detect deviations from quality standards and trigger immediate corrective action [3]. 

The ability of AI to examine complex, multi-dimensional datasets rapidly allows for immediate root cause 

analysis, identifying underlying quality issues much faster than conventional methods [3]. This capability leads 

directly to enhanced product consistency, reduced operational costs, and maximized productivity by lowering 

the necessity for manual intervention and rework [3]. Furthermore, adaptive quality control algorithms can 

learn from historical data to automatically adjust production parameters in real time, maintaining consistent 

quality even when faced with changing production conditions or material variability [3]. By developing tailored 

quality control strategies for each product variant, AI ensures compliance with specified standards and 

customer expectations. 

 

2. Process Optimization in CNC Machining and Assembly 

AI plays a critical role in streamlining both material removal (CNC machining) and material addition (3D 

printing/AM) processes. In conventional manufacturing, AI can optimize component layouts and automate 

repetitive design modifications, directly improving productivity [25]. For CNC machining, ML models can 

predict tool wear, optimize cutting parameters (e.g., feed rates and spindle speeds) to reduce cycle time and 

improve surface finish, and leverage sensor data to detect vibration or chatter in real time. 

The successful implementation of AI involves bridging the gap between theoretical understanding and practical 
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implementation [3]. By utilizing advanced technologies such as machine learning, computer vision, and 

robotics, manufacturers can leverage AI to address long-standing challenges in achieving consistent quality 

and optimizing process parameters, leading to significant reductions in scrap and waste [3]. 

 

3. AI for Additive Manufacturing (AM) Parameter Prediction 

The complexity of Additive Manufacturing (AM), involving numerous interdependent process variables (e.g., 

laser power, scan speed, powder characteristics), makes achieving consistent, high-quality builds challenging. 

AI bridges the gap between design conceptualization and physical realization by optimizing AM process 

parameters [2], [27]. DL models are trained on data derived from previous successful and failed builds, 

allowing them to predict the optimal combination of parameters necessary to achieve desired material 

properties (e.g., porosity, strength, microstructure) and minimize build failures. 

The enhanced efficiency achieved through the combined generative design/DL framework, previously 

discussed in the context of design [27], continues into the manufacturing phase. By learning how to distribute 

material optimally based on complex constraints, DL models facilitate designs that lead to improved material 

utilization and waste reduction. The predictive power helps ensure that the generated complex topologies are 

not only structurally optimal in theory but are also feasible for fabrication via 3D printing [2], [27]. 

 

4. Supply Chain Optimization and Production Scheduling 

Beyond the direct production line, AI extends its influence to enterprise-level operations, notably in optimizing 

the supply chain and production scheduling [25]. AI-driven digital twins and simulations provide a 

comprehensive, holistic view of the manufacturing flow, allowing manufacturers to forecast demand, manage 

inventory, and dynamically re-route materials to optimize efficiency. 

For high-throughput, highly customized production systems, Deep Reinforcement Learning (DRL) offers a 

potent solution [21]. Shortening product development cycles and increasing product diversity pose major 

challenges, requiring production systems to be highly adaptable and robust to process variations. DRL is 

increasingly applied because, unlike other ML methods, it operates in direct interaction with the environment 

using recently collected sensor data, enabling real-time responses to system changes [21]. This adaptability 

means DRL can optimize complex production systems and provide high throughput, proving superior to 

conventional scheduling methods by reducing implementation efforts and dependency on human experience 

[21]. 

 

C. AI for Prognostic Health Management (PHM) and Predictive Maintenance (PdM) 

1. Fundamentals of Fault Diagnosis and Prognosis (FDP) 

Prognostic Health Management (PHM) is a proactive maintenance strategy based on Condition Monitoring 

(CM) data, designed to forecast the future operational health of machinery [4]. PHM systems operate across 

two primary tasks: fault diagnosis (FDP), which identifies the current state and type of fault, and prognosis, 

which predicts the timeline to future failure, often quantified as the Remaining Useful Life (RUL). Accurate 

FDP is crucial for optimizing maintenance schedules, minimizing unplanned downtime, and ensuring the safety 

of industrial assets. Most PHM applications rely heavily on sophisticated ML and DL techniques trained on 

large amounts of historical data collected from sensors. 

The advent of deep learning has been significant because it integrates the feature engineering and PHM 

modeling parts, allowing end-to-end fault detection, diagnosis, and prognosis to be performed automatically 

from raw signals, thereby reducing the need for ad-hoc professional knowledge in signal processing. This 

advancement includes developing generalized definitions and mathematical formulations for FDP problems 

compared to earlier work. 

 

2. Deep Learning Architectures for Remaining Useful Life (RUL) Estimation 

The prediction of RUL requires models capable of analyzing temporal sequences of sensor data, capturing the 

progressive nature of mechanical degradation over time. Early approaches utilizing traditional machine 

learning often proved less effective than sequential models due to their limited capacity to handle time series 

data and long-term dependencies [9]. 

The development of hybrid Deep Learning architectures has achieved superior results in RUL estimation. 
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Specifically, the combination of Convolutional Neural Networks (CNNs) and Long Short-Term Memory 

(LSTM) networks forms a powerful hybrid model [7], [9]. In this architecture, the CNN component excels at 

extracting robust, localized spatial features from the raw sensor data at each time step (e.g., identifying specific 

frequency components indicative of damage). Following feature extraction, the LSTM component, which is 

inherently designed for temporal sequence analysis, processes these extracted features over time to predict the 

degradation trajectory and ultimately, the RUL [7]. 

This CNN-LSTM fusion model is superior to single LSTM models in predictive performance and consistently 

outperforms other machine learning algorithms, as demonstrated by its high accuracy on benchmark datasets 

like the NASA CMAPSS dataset (jet engine sensor data) [7], [9]. For instance, on lithium-ion battery RUL 

prediction, the CNN-LSTM fusion model achieved a Mean Absolute Percentage Error (MAPE) of 0.36% and 

a Mean Square Error (MSE) of 0.38e-4, outperforming single LSTM models [8]. The success of this 

hybridization confirms that mechanical degradation is best modeled by capturing both the localized 

characteristics of damage (spatial features extracted by CNNs) and the long-term historical evolution of those 

features (temporal sequencing handled by LSTMs) [7]. 

 

3. Addressing Data Scarcity and Emerging Architectures 

A significant hurdle for PHM adoption is the data dependency of DL models. Many industries struggle to 

obtain sufficient historical data, particularly data relating to rare or catastrophic failures, making off-line batch 

analysis difficult [15]. To overcome these challenges, emerging architectures are being investigated: 

• Generative Adversarial Networks (GANs): GANs are gaining attention in intelligent FDP. They 

are primarily used for data augmentation, creating synthetic yet realistic fault data that helps train 

diagnostic models in low-data regimes. This approach improves model robustness and generalization 

capability, especially for rare fault conditions where empirical data is scarce. 

• Transformers and Graph Neural Networks (GNNs): These emerging DL architectures are 

attracting research focus in FDP. GNNs are particularly well-suited for modeling complex relational 

data, such as interconnected machinery networks, component dependencies, or supply chain graphs. 

Transformers, known for handling very long sequences effectively, hold potential for complex 

prognostics over extended operational lifecycles. 

 

4. Edge-Cloud Architectures for Condition Monitoring 

The operationalization of PHM demands a data architecture capable of handling the volume and velocity of 

sensor data generated by industrial machinery. The necessary solution involves an integrated edge-cloud 

infrastructure [15]. 

At the edge (physically close to the machinery), streaming analysis is performed in real-time. This includes 

immediate anomaly detection and identification of novel behaviors, allowing rapid awareness of the 

machinery’s health status [15]. Crucially, this edge processing filters and reduces the quantity of data that needs 

to be permanently stored, mitigating network bandwidth and storage constraints [15]. 

The cloud component aggregates the filtered data collected from multiple machines across different locations. 

This high volume of aggregated data is then used to train more accurate diagnostic and prognostic models, 

benefiting from a statistically significant sample size. The results of these highly accurate models are 

subsequently deployed back to the edge devices, allowing them to predict health status in real-time [15]. This 

separation of concerns—real-time monitoring (edge) versus long-term training (cloud)—provides a robust and 

scalable solution, balancing the need for instantaneous safety monitoring with long-term predictive accuracy 

in complex, distributed machinery networks. The challenges of this architecture include computational burden, 

storage, and the need for transfer learning to address evolving environments and equipment fleets. 
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Table 2: Summary of cloud architectures for condition monitoring and key applications 

 

Architecture Strength in PHM 

Context 

Weakness/Challenge Key Application 

Convolutional 

Neural Networks 

(CNNs) 

Excellent for spatial 

feature extraction from 

transformed signal data; 

robust fault diagnosis. 

Requires signal 

preprocessing (e.g., 

spectrograms); limited 

inherent temporal memory. 

Fault diagnosis 

from vibration 

data . 

Long Short-

Term Memory 

(LSTM) 

Superior ability to 

capture long-term 

dependencies in time-

series sensor data. 

High computational cost for 

very long sequences; 

difficulty extracting local 

features. 

Remaining Useful 

Life (RUL) 

estimation.9 

Hybrid (e.g., 

CNN-LSTM) 

Combines CNN for 

feature robustness and 

LSTM for sequence 

modeling, yielding 

superior prediction 

accuracy 7,.9 

Increased model complexity 

and number of 

hyperparameters. 

High-accuracy 

RUL estimation 

under variable 

operating 

conditions 7,.8 

Generative 

Adversarial 

Networks 

(GANs) 

Augments scarce, 

complex fault data, 

improving robustness 

and enabling cross-

domain transfer . 

Challenging training stability 

and potential for mode 

collapse. 

Synthetic data 

generation for rare 

fault conditions . 

 

D. AI in Control Systems and Dynamic Systems 

1. System Identification (SID) using Neural Networks (NNs) 

Control engineering relies fundamentally on accurate System Identification (SID)—the mathematical 

modeling of system dynamics based on observed input and output data [5]. The development of AI greatly 

benefits SID, control, and optimization methods [5]. Traditional SID methods often struggle with complex, 

highly nonlinear systems or those with significant unknown dynamics. NNs offer a solution by acting as 

powerful function approximators capable of learning these intricate relationships directly from data, providing 

a dynamic model necessary for high-performance control design [5]. 

2. Advanced Control Strategies: Adaptive and Backstepping Control with NN Integration 

Neural network integration has substantially enhanced conventional control strategies by adding adaptability 

and robustness against uncertainty [5]. Traditional adaptive control systems are typically vulnerable to 

unknown dynamics and uncertainties, making them challenging to apply effectively to complex nonlinear 

systems. By integrating NNs, controllers become self-tuning, allowing them to estimate and compensate for 

unknown system parameters or dynamics in real time [5]. 

Similarly, NNs are critical for improving backstepping control. Backstepping is a recursive design method for 

stabilizing nonlinear systems, but it often requires finding a suitable control Lyapunov function (CLF), which 

is extremely challenging for general nonlinear control systems [5]. NNs can be used to approximate the 

unknown dynamics or components of the CLF, effectively simplifying the design process and expanding the 

applicability of backstepping to a much wider range of mechanical systems, such as advanced robotics or 

unstable lightweight structures [5]. The integration of NNs transforms classical control theory, making 
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controllers robust to system uncertainties, which is crucial for modern, high-performance mechanical 

applications [5]. 

3. Reinforcement Learning (RL) for Optimal Control and Robotics 

Reinforcement Learning (RL) is uniquely suited for designing optimal controllers, as it allows an agent to learn 

the best sequence of actions to optimize a dynamical system based on performance metrics [5]. RL 

methodologies are typically categorized based on their dependency on a system model: 

• Model-Based RL: This approach utilizes a known, or learned, mathematical model of the system 

dynamics to accelerate the learning process [5]. The model information can be fully used in the RL 

algorithm to improve sample efficiency [5]. 

• Model-Free RL: In practical applications, obtaining an accurate mathematical model is often 

difficult. Model-free RL, therefore, directly learns the optimal policy or value function from 

interacting with the environment, without relying on an explicit system model [5]. 

Deep Reinforcement Learning (DRL) applies these principles using deep neural networks to approximate the 

policy or value functions, enabling control over high-dimensional and complex state spaces. DRL is 

successfully employed in production control, where it demonstrates superior performance over conventional 

methods in providing high adaptability and robustness to process variations [21]. Furthermore, specific DRL 

architectures, such as Deep Q-Networks (DQN), are instrumental in addressing fundamental robotic problems 

like path planning in unknown environments, leveraging self-learning capabilities [22]. 

Optimal control, often utilizing Approximate Dynamic Programming (ADP), is an important branch of control 

theory aimed at minimizing a cost function to optimize a system [5]. 

4. Hybrid Control: AI-Enhanced Model Predictive Control (MPC) 

Model Predictive Control (MPC) is a multivariable control algorithm defined by three core components: an 

internal dynamic model of the process, a cost function defined over a receding time horizon, and an 

optimization algorithm that minimizes the cost function using control inputs [5]. The internal dynamic model 

is traditionally based on linear or linearized system approximations, which can limit performance when dealing 

with highly nonlinear mechanical systems. AI significantly enhances MPC by augmenting or replacing this 

internal model with sophisticated neural network approximations. For instance, combining Adaptive Neuro-

Fuzzy Inference Systems (ANFIS) or various Radial Basis Neural Networks (RBNN) with MPC enhances the 

predictive capabilities of the internal model [5]. This augmentation allows the controller to accurately forecast 

system behavior under nonlinear conditions, leading to optimized control in complex applications, such as 

Eddy Current Dynamometers [5]. 

Researchers have implemented and validated AI-based MPC on large-sized Eddy Current Dynamometers, 

comparing techniques like ANFIS, RBNN, SHLNN, and GRNN, and highlighting the novelty of this 

application in the literature [5]. The integration of AI elevates MPC from relying on approximate models to 

using highly accurate, learned dynamic models, dramatically improving the controller's ability to handle 

complex dynamics, thereby enhancing safety and operational efficiency [5]. 

5. Robustness and Stability in DRL: Evolutionary Reinforcement Learning (ERL) 

Despite the profound success of DRL in simulations, its transition to real-world, safety-critical mechanical 

systems is hindered by inherent limitations: DRL often suffers from brittle convergence properties sensitive to 

hyperparameters, difficulty with sparse reward environments (temporal credit assignment), and a lack of 

effective exploration [12]. These challenges severely limit the applicability of pure DRL approaches to critical 

real-world problems [12]. 

Evolutionary Algorithms (EAs), black-box optimization techniques inspired by natural evolution, are well-
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suited to address these weaknesses. EAs provide effective exploration through diverse sets of policies and 

inherent stability via their population-based approach [12]. Evolutionary Reinforcement Learning (ERL) is a 

hybrid algorithm designed to leverage the strengths of both paradigms [12]. ERL utilizes an EA population to 

generate diversified data, which trains the RL agent, and periodically reinserts the RL agent back into the EA 

population to inject gradient information [12]. This fusion allows ERL to inherit the EA’s robustness and 

exploration capability while leveraging the gradient-based learning efficiency of DRL [12]. 

ERL represents a necessary technological evolution for adopting DRL in industrial and autonomous settings, 

overcoming the fragility that often limits pure DRL deployment in critical, real-world control tasks [13]. 

E. AI in Computational Mechanics and Advanced Simulation 

1. Physics-Informed Neural Networks (PINNs): Methodology and Governing Equations 

Computational mechanics relies on solving complex Partial Differential Equations (PDEs) that govern physical 

phenomena (e.g., fluid dynamics, heat transfer, elasticity). This task is traditionally computationally expensive, 

requiring extensive meshing and time-stepping inherent to methods like FEA and CFD. Physics-Informed 

Neural Networks (PINNs) offer a revolutionary computational approach that embeds the underlying physical 

laws directly into the neural network architecture [6]. 

A PINN typically consists of a deep neural network whose parameters are optimized by minimizing a loss 

function comprising multiple components: one component minimizes the residual of the governing PDE 

(ensuring compliance with physical laws within the domain), and the others ensure the network satisfies the 

boundary conditions (BCs) and initial conditions (ICs) [6], [10]. This structure enables PINNs to solve PDEs 

without requiring labeled data (unsupervised setting) [10]. Advanced variants, such as those using Deep 

Backward Stochastic Differential Equations (Deep BSDE) methods, utilize NNs to approximate solutions of 

high-dimensional PDEs. Integrating PINNs into this framework enhances its capability by explicitly enforcing 

adherence to governing stochastic differential equations, resulting in more accurate and reliable solutions [10]. 

2. Applications in Structural Analysis and Elasticity Problems 

PINNs have rapidly found applications across various domains of structural mechanics. They have been 

effectively used for solving problems in linear elasticity and can be extended to highly nonlinear elasticity 

problems where constitutive equations are complex [6], [10]. Specific applications include solving Kirchhoff 

plate bending problems under transverse distributed loads and modeling contact mechanics with elastic 

Winkler’s foundations [10]. This methodology demonstrates its capacity to handle complex, domain-specific 

physical formulations by encoding them mathematically into the optimization landscape of the neural network 

[6]. 

The effectiveness of advanced PINN structures, such as the Physics-Informed Point Network (PIPN), has been 

demonstrated for complex mechanical systems, including incompressible flow, heat transfer, and linear 

elasticity [10]. Crucially, the ability of deep neural networks (DNNs) to act as physics-informed models allows 

for the solving of PDEs in unsupervised settings where traditional methods rely on labeled training data [10]. 

3. Multiscale Modeling: Physics-Constrained DL for Damage and Fracture 

Multiscale simulations, which often leverage homogenization theory (e.g., the FE² method) to couple macro-

scale component behavior with micro-scale material responses, are essential for modeling heterogeneous 

materials, particularly when analyzing damage and fracture in large components [6]. However, these 

simulations are prohibitively expensive and memory-intensive [6]. Physics-constrained deep learning (PCDL) 

models offer a solution by acting as accurate, computationally efficient surrogates for these microscale 

simulations [6]. A proposed framework utilizes a physics-constrained Recurrent Neural Network (RNN) 

designed to predict homogenized path-dependent microstructural behaviors [10]. A key requirement for 

engineering validity is ensuring that the DL model adheres to fundamental physical laws throughout the 

process. This is achieved by introducing hard constraints: 
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1. Thermodynamic Consistency: A penalty term is added to the loss function based on energy analysis, 

promoting solutions that do not violate fundamental laws of thermodynamics [10]. 

2. Irreversible Damage: The model incorporates a hard constraint by directly manipulating the 

temporal variation of the RNN’s outputs, strictly accounting for the irreversible nature of damage 

accumulation processes [10]. 

By explicitly integrating these hard constraints, the PCDL model ensures that the speedup—demonstrated to 

be about four orders of magnitude faster than the classic FE² approach in terms of CPU hours for online 

computations—does not compromise the engineering validity or accuracy in capturing complex, irreversible 

phenomena like elasto-plastic hardening and softening deformations [10]. 

4. Addressing Spectral Bias and Irregular Geometries (PGCANs) 

A known limitation in early DNNs used as PDE solvers is "spectral bias," where the network tends to learn 

only the low-frequency, smooth characteristics of the solution, missing higher-frequency details crucial for 

accuracy [10]. Furthermore, applying PINNs to domains with irregular geometries (a common occurrence in 

mechanical components) often complicates implementation [10]. To address these issues, Parametric Grid 

Convolutional Attention Networks (PGCANs) have been introduced [6]. PGCANs map the input space to a 

structured high-dimensional feature space using a parametric grid convolutional encoder [6]. This architecture 

significantly improves information propagation, especially from the boundaries, and qualitatively and 

quantitatively assesses spectral bias, demonstrating that PGCANs effectively mitigate this accuracy limitation 

[10]. Moreover, PGCANs naturally extend to 3D and can handle irregular domain geometries, such as solving 

the Poisson equation within a torus, substantially increasing the utility and reliability of PINNs for complex 

mechanical design problems [10]. Importantly, PINN models are highly significant in their capacity to solve 

inverse problems where conventional methods fail to solve PDEs with unknown parameters [10]. 

5. AI for Turbulence Modeling and Fluid Dynamics 

The accurate modeling of turbulent flows remains one of the greatest unresolved challenges in classical 

computational mechanics [5]. AI is providing new pathways for modeling turbulence and optimizing thermal 

transport [5]. Machine learning techniques, including CNNs, RNNs, Deep Reinforcement Learning (DRL), 

and PINNs, are increasingly applied to turbulence modeling to overcome the limitations of conventional 

Reynolds-Averaged Navier–Stokes (RANS) equations [5]. While this data-driven approach requires 

substantial high-quality data for training, ongoing research is refining collection, processing, and generalization 

methodologies [5]. 

Specific studies have applied PINNs to solve RANS equations for turbulent flows, such as backward-facing 

step flow, incorporating turbulence models like the standard k-ε model, and comparing results favorably to 

Direct Numerical Simulation (DNS) data when sufficient labeled training data (e.g., three to five vertical lines 

of data) is provided [5]. Furthermore, research on an Adverse Pressure Gradient (APG) boundary layer showed 

that PINNs effectively model wall pressure and Wall Shear Stress (WSS), with the training cost of the network 

remaining consistent across different Reynolds numbers [5]. 

A notable breakthrough demonstrates the capability of DRL to dynamically adjust thermal boundaries in 

turbulence simulations, achieving a heat transfer enhancement of 38.5%—over 50% better than traditional 

approaches [5]. Crucially, the AI-derived strategy was distilled into a simple formula that retained effectiveness 

even in extreme, unencountered conditions, offering a powerful framework for advanced turbulent flow control 

and optimization in real-world applications [5]. 

Similarly, ML models are widely utilized in heat exchanger modeling for performance calculation, design 

optimization, and transient performance predictions, often built upon extensive experimental or numerical 

datasets [5]. ML is particularly attractive for these multi-physics systems because it provides the computational 

speed and robustness necessary for optimization studies and real-time control analysis, where rapid iteration 
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and reliable performance estimation are necessary [5]. Specific applications include predicting fouling rates 

and transient performance under varying flow regimes, see table 3 [5]. 

 

Table 3: PINN Methodological Spectrum in Computational Mechanics 

PINN/PCDL 

Variant 
Application Domain 

Key Technical 

Challenge Addressed 
Core Constraint/Benefit 

Vanilla PINNs 

(vPINNs) 

Simple PDEs (e.g., 

1D Burgers’ equation) 

Solving 

forward/inverse PDEs 

without requiring 

labeled data.10 

Loss function minimizes PDE 

residual and boundary 

conditions. 

Physics-

Constrained 

RNNs 

Multiscale Damage 

Modeling 

(FE$^2$ surrogate) 

Prohibitive 

computational cost of 

multiscale 

simulations.10 

Hard constraints for 

thermodynamic consistency 

and irreversible damage; four 

orders of magnitude faster 

online computation.10 

Parametric 

Grid CNN 

(PGCAN) 

PDEs on irregular 

domains 

Spectral bias and 

decreased accuracy 

with increasing PDE 

complexity.10 

Parameterized grid encoding 

improves information 

propagation and mitigates 

spectral bias.10 

Deep BSDE 

Methods 

High-dimensional 

Stochastic Differential 

Equations 

Computational burden 

of high-

dimensionality.10 

Embeds physical laws to 

ensure solutions adhere to 

governing stochastic 

equations.10 

 

F. AI in Materials Science and Heat Transfer Engineering 

1. Materials Informatics and High-Throughput Property Prediction 

The discovery and optimization of new materials with specific mechanical, thermal, and chemical 

properties are essential tasks in mechanical engineering, traditionally limited by the computational expense 

of accurate theoretical methods such as Density Functional Theory (DFT). Machine Learning and AI methods 

have been hailed as the next scientific paradigm, accelerating materials discovery and optimization under 

initiatives like the Materials Genome Initiative (MGI) [18,19]. 

ML enables materials informatics to rapidly predict unprecedented thermal properties and other critical 

characteristics. By learning implicit chemical and geometric knowledge, data-driven modeling approaches 

provide an efficient means for material property prediction, effectively surrogating computationally demanding 

high-fidelity simulations [19]. This capability allows researchers to filter through vast hypothetical material 

spaces quickly, reserving expensive computational resources like DFT for only the most promising candidates, 

thereby drastically shortening the research and development pipeline. 

The use of Graph Neural Networks (GNNs) is rapidly growing in this domain. GNNs are highly relevant as 

they work directly on the graph representation of molecules and materials, providing full access to structural 

information. Unlike traditional approaches, GNNs automatically extract node relationships and topology 

structure information, reducing the cost of manually designing features and eliminating human influence. 

GNNs have proven effective in predicting material properties, accelerating simulations, and designing new 

structures. 
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2. Inverse Materials Design and Crystal Structure Prediction 

The paradigm of inverse design extends fully into materials science, moving quickly toward an AI-driven 

approach. Inverse materials design aims to determine the chemical composition and crystalline structure 

required to achieve a predefined set of performance metrics. 

For crystal structure prediction (CSP), a critical challenge involves efficiently sampling the vast configuration 

space of atoms, a limitation acutely felt when using conventional DFT-based methods. Methods like 

DeltaCrystal utilize deep learning to address this limitation. This approach employs a deep residual neural 

network to learn and predict the atomic distance matrix for a given material composition, based on patterns 

found in known structures. Subsequently, this predicted matrix is used to reconstruct the 3D crystal structure 

via optimization algorithms, such as genetic algorithms. Through this approach, the model effectively learns 

implicit interatomic relationships, demonstrating superior structure prediction performance for more complex 

crystals compared to global optimization-based CSP methods. This capability is instrumental in accelerating 

the discovery of novel alloys and composites needed for advanced mechanical systems operating under extreme 

conditions. 

3. ML for Heat Exchanger Modeling and Thermal System Optimization 

Heat exchangers are integral components in countless mechanical systems, from power plants to air-

conditioning units, and their modeling for performance calculation, design optimization, and control is crucial. 

Traditionally, their analysis relied on theoretical, analytical, or numerical methods, which often lack the 

computational speed and robustness required for modern real-time optimization studies. 

Machine learning models, trained on experimental or high-fidelity numerical data, significantly improve the 

state-of-the-art simulation approaches by offering high prediction capability as a regression tool. ML is used 

to predict crucial factors such as fouling rates, thermodynamic properties of non-ideal fluids, and transient 

performance under varying flow regimes [19,20]. The speed and robustness offered by ML models are essential 

for optimization studies and control analysis, where rapid iteration and reliable performance estimation are 

necessary. However, the successful deployment of these models relies heavily on the quality and integrity of 

the database used for training, as well as the appropriate selection and implementation of the ML algorithm. 

4. Discussion 

A. Critical Synthesis of Findings and Interdisciplinary Synergies 

The literature overwhelmingly demonstrates that AI/ML is not merely optimizing isolated processes within 

mechanical engineering, but is actively facilitating the convergence and creation of powerful new 

interdisciplinary loops across previously distinct domains. 

1. Design-Simulation Integration 

A primary synergy exists between computational simulation and generative design [27]. Traditional generative 

design relies on iterative validation using expensive computational methods. The development of Physics-

Informed Neural Networks (PINNs) and physics-constrained deep learning surrogates (Section III.E) 

fundamentally changes this dynamic. By creating surrogate models that are four orders of magnitude faster 

than conventional multiscale methods while maintaining thermodynamic consistency [10], PINNs allow 

designers to integrate physically reliable, high-fidelity simulation checks directly into the rapid, iterative 

generative loop. This integration enables designers to iterate on designs with complex material behaviors, such 

as fracture and damage, in near real-time, thereby ensuring that computationally generated components are 

structurally sound and physically realizable. The rapid growth of generative AI, including models like 

Diffusion Models and Large Language Models (LLMs), suggests this design-simulation loop will only 

accelerate [20]. 
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2. Control-PHM Synergy 

A vital link is forged between Prognostic Health Management (PHM) and advanced control systems. Highly 

accurate prognostic models, particularly those based on hybrid CNN-LSTM architectures [7], provide precise 

estimations of future degradation and Remaining Useful Life (RUL). This predictive output can be directly fed 

into AI-enhanced Model Predictive Control (MPC) systems. Instead of relying on a static, nominal model, the 

AI-enhanced MPC can adjust operational parameters (e.g., rotational speed, load limits) based on the predicted 

future state of degradation. This synergy allows for truly optimized and resilient system operation, enabling 

systems to run safely up to the exact point of predicted failure, maximizing asset utilization, and integrating 

maintenance tasks seamlessly with operational planning. 

3. Material-Design Loop Closure 

AI closes the loop between materials science and product design, rapidly accelerating the material development 

cycle. Materials informatics models (Section III.F), such as DeltaCrystal and GNNs, quickly identify and 

predict novel material properties and crystal structures. This inverse materials knowledge [11] immediately 

informs the Generative Design and Topology Optimization process (Section III.A). Instead of designing a 

component and then selecting an existing material, the process becomes holistic: the system can co-design the 

component geometry and the necessary material characteristics simultaneously, leading to components 

optimized for novel, high-performance alloys and composites that were previously inaccessible through 

conventional, linear R&D pipelines. 

B. Key Challenges and Limitations in AI Integration 

1. Data Dependencies: Quality, Quantity, and Standardization 

Deep learning’s efficacy is predicated on the availability of large, high-quality, labeled datasets. In mechanical 

engineering, this dependency presents multiple hurdles. First, real-world data, particularly sensor data from 

industrial machinery, is often fragmented, noisy, and unlabeled. Second, achieving robust Prognostic Health 

Management (PHM) requires data on rare or catastrophic failures, which, by definition, are difficult and costly 

to obtain in sufficient quantity for training robust DL models [15]. 

Furthermore, for specialized domains like mechanism synthesis, the lack of standardized, labeled datasets 

impedes comparative research and broad application [23,24]. Researchers must currently spend significant 

effort creating proprietary datasets, limiting the ability to compare the efficiency and generalization capacity 

of different ML algorithms across institutions. The transition to widespread ML adoption demands industry-

wide protocols for data collection, labeling, and sharing, potentially mitigated through synthetic data generation 

techniques like GANs. 

2. The Interpretability and Explainability Crisis (XAI) 

Perhaps the most critical barrier to deploying AI in safety-critical mechanical systems is the "black box" 

problem [14]. The scale and inherent nonlinearity of modern AI models, particularly large deep learning 

architectures used in generative design [20] or autonomous control, often exceed human comprehension [14]. 

This creates a widening gap between machine knowledge and human understanding of the system's decision-

making process. 

For mechanical engineering, where failure can result in catastrophic outcomes (e.g., aerospace components, 

high-speed robotics), Explainable AI (XAI) is paramount [16]. Generative AI and Large Language Models 

(LLMs) pose significant interpretability challenges due to their complex, large-scale operations and technical 

barriers like feature superposition. Without the ability to interpret a design or control decision, engineering 

trust is undermined. The inability to articulate why an autonomous system made a critical decision poses severe 

operational and regulatory barriers [14]. XAI is essential not just for building trust, but for compliance with 

regulatory imperatives, establishing legal liability, and performing effective root cause analysis after a failure 

occurs [14]. As AI evolves toward autonomous systems, interpretability becomes crucial for understanding and 



Siddiqui  DOI: 10.36297/vw.jei.v7i4.101   

15 
 

directing their decision-making processes. 

3. Robustness, Regulatory, and Ethical Concerns 

While Deep Reinforcement Learning (DRL) demonstrates superior performance in controlled environments, 

there remains a critical challenge in transferring these findings to real-world production systems [21]. DRL 

often exhibits fragile convergence properties and unpredictable behavior when faced with unforeseen 

conditions or environmental shifts [12]. This lack of demonstrated reliability and the uncertainty regarding 

safety aspects hinder the practical implementation of DRL in high-throughput manufacturing and dynamic 

control, necessitating hybrid approaches like ERL for increased stability [12,13]. Furthermore, the general 

adoption of automation, including ML, remains inconsistent across academic evidence synthesis, suggesting 

fundamental barriers related to guidance, user awareness, and trust in reliability must be addressed for broader 

engineering adoption. 

More broadly, the review emphasizes the imperative for responsible innovation. The adoption of AI must align 

with broader societal aspirations for progress, sustainability, and inclusivity [16]. Establishing clear regulatory 

frameworks is necessary to govern AI agents operating in autonomous mechanical systems, ensuring that 

ethical considerations are addressed and that AI integration does not lead to unintended consequences, 

particularly those impacting safety and reliability. 

4. Computational Cost and System Complexity 

Although methods like PINNs and physics-constrained deep learning models offer remarkable speed-ups 

during online computation (deployment) [10], the initial cost associated with data generation, model training, 

and the specialized hardware (GPUs) required remains substantial. This challenge is also noted as a major 

barrier in the growth of generative design [20]. Moreover, the systems themselves are becoming increasingly 

complex. The superior performance achieved through hybrid architectures, such as the CNN-LSTM for RUL 

estimation 7 or the necessity of Edge-Cloud infrastructure for PHM deployment [15], introduces significant 

systems integration complexity (see table 4). Deploying and maintaining these heterogeneous architectures 

requires specialized expertise across multiple domains, including network engineering, cloud infrastructure 

management, and advanced DL knowledge, presenting a barrier to entry for smaller enterprises. 

Table 4: Summary of Critical Challenges in AI/ML Deployment in Mechanical Engineering 

Challenge 

Domain 

Core Issue Impact on ME Systems Supporting Source 

Data and 

Reliability 

Lack of standardized, 

labeled datasets; 

reliance on rare 

failure data. 

Limits generalizability and 

robustness of models, 

impeding industrial adoption 

and creating operational risk 

15,.23 

Need for standardized 

mechanism synthesis 

data 23; data scarcity in 

industrial PHM.15 

Interpretability 

(XAI) 

Scale and 

nonlinearity of deep 

models create non-

transparent decisions 

("black box"). 

Hinders regulatory 

compliance, engineering 

trust, and effective failure 

investigation 14, . 

Complexity defies 

traditional 

interpretability; impacts 

safety and legal liability 

14, . 

Transition to 

Real-World 

Difficulty 

transferring high-

performance lab 

results (especially 

Safety risks and unknown 

reliability under unforeseen 

operating conditions 21, . 

Focus on safety and 

reliability needed for 

production 

implementation 21; ERL 

for stability 12,.13 
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RL) to physical 

systems. 

Physical 

Consistency 

Purely data-driven 

models risk violating 

fundamental physical 

laws. 

Solutions may be non-

physical or numerically 

unstable in critical 

simulation/design 6,.10 

Physics-informed 

constraints are essential 

for multiscale accuracy 

and validity.10 

 

C. Future Perspectives and Research Trajectories 

The evolution of AI in mechanical engineering points toward several definitive future research trajectories 

focused on robustness, integration, and human-machine collaboration. 

1. Hybridizing Mechanistic and Data-Driven Models 

The future standard for high-stakes mechanical simulation and design will be defined by the seamless 

hybridization of mechanistic domain knowledge and data-driven learning. The current success of Physics-

Informed Neural Networks (PINNs) and physics-constrained deep learning (PCDL) confirms this trend 

[6],[10]. Future research must focus on moving beyond external loss function penalties to fully integrating 

domain knowledge—such as thermodynamic principles or constitutive models—directly into the structure and 

initialization of the neural network architecture. This mechanistic integration will guarantee solutions that are 

inherently physically consistent and robust against extrapolation errors, making the AI tools viable for critical 

certification processes. 

2. Development of Next-Generation Architectures 

The utility of emerging network architectures, particularly Graph Neural Networks (GNNs) and Transformer 

models, is expected to grow significantly. GNNs are uniquely positioned to analyze complex relational data, 

modeling intricate component dependencies in large mechanical systems, optimizing supply chain networks, 

or providing detailed fault diagnosis across interconnected machinery [18],[19]. Furthermore, Generative AI, 

beyond its immediate use in design [20], will likely expand into new areas, such as synthesizing rapid 

hypotheses, summarizing complex research findings, and providing automated knowledge extraction from vast 

bodies of unstructured engineering documentation, potentially leveraging models like diffusion models and 

LLMs [20]. 

3. Autonomous Systems and Evolutionary Reinforcement Learning (ERL) 

The trajectory toward truly autonomous design, manufacturing, and control systems will be enabled by robust 

RL variants like Evolutionary Reinforcement Learning (ERL). ERL's ability to maintain stability and explore 

complex solution spaces overcomes the major fragility issues associated with pure DRL, paving the way for 

adaptive production lines and sophisticated robotic control [12]. Critical future research must prioritize the 

development of Verified and Validated (V&V) methodologies specifically tailored for these autonomous, 

learning systems. These V&V processes must ensure that safety margins are preserved and guaranteed, even 

as the system continuously learns and adapts its policy in real-time operating conditions. The potential of DRL 

to achieve optimal real-world performance, such as realizing over 50% better heat transfer enhancement in 

turbulent flow control [21], mandates continued research into its reliability and safe deployment. 

4. Promoting an AI-Ready Workforce 

The successful integration of Scientific AI (SciAI) into mechanical engineering demands a profound shift in 

workforce capability and structure [17]. It necessitates fostering an AI-ready workforce capable of 

understanding both fundamental mechanical principles and sophisticated computational intelligence 

techniques [17]. The field requires deep interdisciplinary collaboration, breaking down the historical silos 

between computer science, electrical engineering, and traditional mechanical engineering departments. Only 
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through collaborative, integrated expertise can the full potential of AI/ML be responsibly harnessed for 

progress and sustainability. 

5. Conclusion 

Artificial Intelligence and Machine Learning have irrevocably transformed the landscape of mechanical 

engineering, transitioning the discipline from an era dominated by analytical and high-cost computational 

analysis to one defined by data-driven speed, optimization, and generative intelligence. The evidence 

synthesized across design, manufacturing, PHM, control, and computational mechanics confirms that AI 

provides tools for achieving levels of efficiency and complexity previously unattainable, whether through the 

four orders of magnitude speed-up offered by physics-constrained surrogate models 10, the superior accuracy 

of hybrid CNN-LSTM networks in RUL prediction, or the ability of generative models to design components 

optimized for novel materials. However, the analysis underscores that the next decade of progress hinges not 

solely on algorithmic power, but critically on addressing systemic challenges. The imperative is to move 

beyond proof-of-concept demonstrations toward robust, reliable, and deployable systems. This requires solving 

the data scarcity problem through architectural solutions like Edge-Cloud integration, mitigating the inherent 

fragility of autonomous control through hybrid ERL methods, and, most importantly, establishing rigorous 

Explainable AI (XAI) frameworks to satisfy regulatory demands and build engineering trust in safety-critical 

applications. In conclusion, the full potential of AI and ML within mechanical engineering can only be realized 

through responsible innovation, stringent ethical considerations, and robust interdisciplinary collaborations. 

By prioritizing physical consistency, trustworthiness, and systematic reliability, the engineering community 

can ensure that this transformative technology aligns with societal aspirations for progress and sustainability, 

establishing AI as the central pillar of advanced mechanical systems design and operation. 
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