DOI: 10.36297/vw.applsci.v5i1.417

ISSN: 2582-5615

VW Applied Sciences, Volume: 5, Issue: 1, 13-16

Optimization of Renewable Energy Microgrids Using Smart Control Algorithms

Dr. Yashraj Koul^{1*}, Dr. Abhinav Rathore^{2*}

Received: Mar 02, 2023 Accepted: Mar 03, 2023 Published online: Mar 05, 2023

Abstract: Renewable energy microgrids have emerged as a promising solution for decentralized power generation, enabling greater energy independence, resilience, and sustainability. With the increasing penetration of intermittent renewable sources such as solar and wind, smart control algorithms are essential for ensuring stable operation, optimal power flow, and reliability. This review provides a comprehensive examination of optimization techniques used in microgrid energy management systems. It explores classical control methods, heuristic optimization, model predictive control, and AI-driven algorithms that address uncertainties in generation and demand. The paper assesses strategies for real-time scheduling, load balancing, energy storage optimization, and demand-side management. Challenges such as variability of renewable generation, communication constraints, cybersecurity risks, and integration with legacy systems are discussed in detail. The review also highlights recent advancements in multi-agent systems, reinforcement learning, and adaptive controllers that enhance microgrid flexibility and resilience. Practical case studies demonstrate how smart optimization improves energy efficiency, reduces operational cost, and supports carbon-neutral energy ecosystems. The paper concludes by outlining future research opportunities in digital twin modeling, transactive energy systems, and hybrid control architectures that will shape next-generation renewable microgrids.

Keywords: Microgrids, Smart Control, Renewable Energy, Energy Optimization, AI-Based Controllers

1. Introduction

Microgrids represent a transformative shift in modern power systems by enabling localized generation, distribution, and consumption. Their integration with renewable sources requires robust control mechanisms to manage intermittency and ensure stability. Traditional grids rely on centralized control, whereas microgrids operate through distributed systems that must dynamically respond to fluctuations in power supply and demand [1]. Smart control algorithms play an essential role in optimizing renewable energy utilization, coordinating storage units, and ensuring power quality in islanded and grid-connected modes.

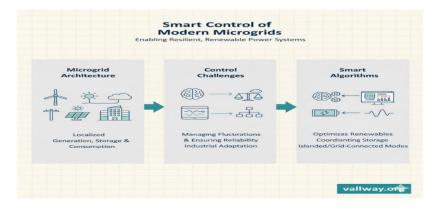


Fig. 1

¹Associate Professor, Faculty Of Engineering, Gautam Buddha University, Greater Noida, India

²Professor, Computer Science And Engineering, Invertis University, Bareilly UP, India *Authors Email: yashraj.8@gbu.ac.in, abhinav.r78@invertis.ac.in

2. Energy Management and Optimization Techniques

Energy management systems (EMS) are central to microgrid operation, coordinating distributed energy resources, storage units, and loads. Classical techniques such as proportional—integral control and droop control provide foundational stability but lack adaptability under changing conditions. Model predictive control (MPC) has become widely adopted due to its ability to forecast system behavior and optimize multi-variable control decisions [2]. Heuristic optimization methods such as genetic algorithms, particle swarm optimization, and ant colony optimization are used to address complex, nonlinear scheduling problems where analytic solutions are impractical.

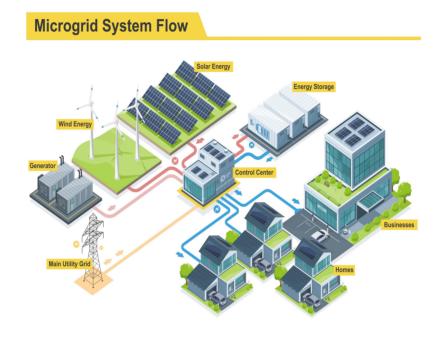


Fig. 2 Microgrid Smart Flow

3. AI-Based Controllers and Reinforcement Learning

AI-driven controllers have transformed microgrid optimization by enabling predictive, adaptive, and autonomous decision-making. Machine learning models forecast renewable generation using historical weather data, while reinforcement learning agents learn optimal dispatch strategies through continuous interaction with the system environment [3]. Multi-agent systems coordinate distributed generators and storage units, offering resilience against failures and cyber-attacks. These intelligent algorithms improve efficiency by recognizing patterns that traditional methods cannot capture.

4. Industrial Applications and Case Studies

Machine vision is used extensively across industries. In electronics, it detects solder joint defects and surface anomalies on printed circuit boards. In automotive manufacturing, it inspects weld quality, component alignment, and paint consistency [1]. Textile industries deploy vision systems to identify weaving defects, while food industries rely on hyperspectral imaging for contamination detection. Pharmaceutical companies use vision systems for label verification, blister inspection, and pill counting. These systems significantly reduce production downtime and enhance traceability.

5. Storage Integration and Demand-Side Optimizatio

Energy storage systems—such as lithium-ion batteries, flywheels, and supercapacitors—play a crucial role in balancing supply-demand mismatches. Smart algorithms determine the optimal charging and discharging cycles based on electricity price signals, load forecasts, and renewable energy availability [4]. Demand-side management further enhances performance by shifting non-critical loads to periods of abundant renewable generation. The integration of smart meters and IoT sensors enables real-time control and user participation.

6. Microgrid Challenges and Future Opportunities

Smart control algorithms are vital for optimizing renewable energy microgrids, ensuring stability, efficiency, and resilience. As AI techniques mature, microgrids will evolve into autonomous, self-optimizing systems capable of handling complex interactions among distributed energy components. Continued innovation in adaptive control, digital twins, and decentralized energy trading will shape a sustainable and intelligent energy future.



Fig. 3

7. Conclusion

Smart control algorithms are vital for optimizing renewable energy microgrids, ensuring stability, efficiency, and resilience. As AI techniques mature, microgrids will evolve into autonomous, self-optimizing systems capable of handling complex interactions among distributed energy components. Continued innovation in adaptive control, digital twins, and decentralized energy trading will shape a sustainable and intelligent energy future.

References

- M. Singh and R. Patel, "Control Strategies for Renewable Microgrids," IEEE Transactions on Smart Grid, vol. 12, no. 3, pp. 2441–2452, 2021.
- 2. K. Banerjee et al., "Model Predictive Control for Microgrid Optimization," Electric Power Systems Research, vol. 199, pp. 107–118, 2021.
- 3. S. Farooq and H. Shin, "Reinforcement Learning in Smart Microgrids," IEEE Access, vol.10, pp. 91234–91247, 2022.

- 4. P. Roy and S. Das, "Storage Optimization in Renewable Microgrids," Applied Energy, vol. 310, pp. 118–130, 2022.
- 5. L. Cheng and F. Wang, "Digital Twin Technologies for Microgrid Planning," Energy Reports, vol. 8, pp. 1120–1135, 2022.

© 2023 by the authors. Open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)