ISSN: 2582-5615

DOI: 10.36297/vw.applsci.v5i1.417

VW Applied Sciences, Volume: 5, Issue: 1, 10-12

Application of Machine Vision Techniques for Automated Quality Inspection

Dr. Aneeta Koul^{1*}, Dr. Zubair Rather^{2*}

¹Associate Professor, School Of Engineering, Gautam Buddha University, Greater Noida, India

²Professor, Computer Science And Engineering, Invertis University, Bareilly UP, India

Received: Feb 02, 2023 Accepted: Feb 03, 2023 Published online: Feb 05, 2023

Abstract: Machine vision has become an indispensable component of modern industrial automation, enabling accurate, efficient, and consistent quality inspection. Unlike conventional manual inspection, which is prone to fatigue and inconsistency, machine vision offers non-invasive, objective, and high-speed evaluation of products across diverse manufacturing domains. This review examines the evolution, architecture, and contemporary implementation of machine vision techniques for automated inspection tasks. Emphasis is placed on image acquisition methods, illumination strategies, feature extraction, and classification algorithms, including the transition from classical image processing to advanced deep learning—based models. Key challenges such as variable lighting, occlusion, surface reflectivity, and computational cost are analyzed alongside the emergence of real-time inspection enabled by edge AI and optimized convolutional neural networks. The paper also reviews case studies demonstrating applications in electronics, automotive systems, food processing, textile inspection, and pharmaceutical packaging. The integration of robotics, IoT environments, and cloud analytics further expands the capabilities of machine vision-based inspection systems. The review concludes by considering future innovations such as self-learning inspection pipelines, multimodal imaging, explainable AI, and 3D vision technologies poised to reshape industrial quality assurance.

Keywords: Machine Vision, Automated Inspection, Deep Learning, Industrial Automation, Image Processing

1. Introduction

Quality inspection is critical to ensuring product reliability, regulatory compliance, and customer satisfaction. Traditional human-based inspection is inherently limited by subjectivity and inconsistency, especially in high-volume production environments. Machine vision systems overcome these limitations through high-resolution imaging, robust algorithms, and rapid computational processing that can identify defects with exceptional precision [1]. With recent advancements in deep learning, GPU acceleration, and industrial IoT, machine vision has evolved from simple threshold-based detection to sophisticated multi-stage decision-making systems capable of handling complex inspection tasks.

2. Machine Vision System Architecture

A typical machine vision workflow involves illumination, image capture, preprocessing, segmentation, feature extraction, and classification. Proper illumination is essential for enhancing edges and contrast, enabling reliable segmentation under diverse environmental conditions [2]. High-speed industrial cameras capture images that undergo preprocessing operations such as noise reduction, histogram equalization, and morphological filtering. Segmentation isolates the region of interest through thresholding, clustering, or contour-based techniques. Classical feature extraction employs methods like SIFT, HOG, and GLCM, while modern systems increasingly rely on CNN-based feature learning [3].

Vallway.org 10

^{*}Authors Email: koulaneet.8@gbu.ac.in, ratherzub.78@invertis.ac.in

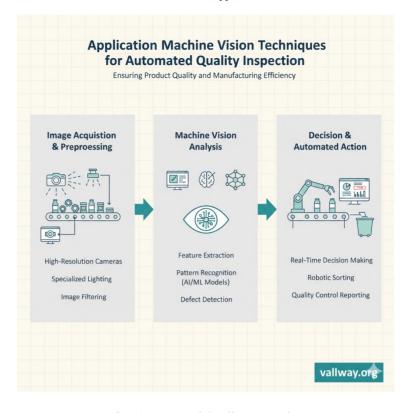


Fig. 1 Automated Quality Inspection

3. Deep Learning for Industrial Inspection

Deep learning has revolutionized machine vision by enabling end-to-end learning and improved generalization. CNN architectures such as ResNet, MobileNet, and EfficientNet are widely used for defect classification, anomaly detection, and pattern recognition [3]. Autoencoders and generative adversarial networks have gained attention for unsupervised anomaly detection, particularly when defective samples are scarce. Transfer learning allows models pre-trained on large datasets to be adapted to specific industrial contexts, reducing training time and data requirements. The deployment of quantized and pruned models at the edge ensures real-time performance on resource-limited hardware.

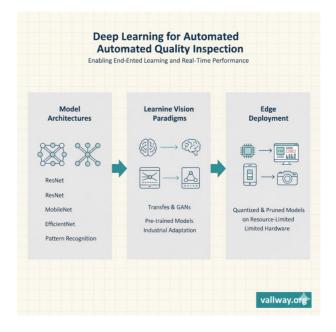


Fig. 2 Deep Learning For Automated Quality Inspection

4. Industrial Applications and Case Studies

Machine vision is used extensively across industries. In electronics, it detects solder joint defects and surface anomalies on printed circuit boards. In automotive manufacturing, it inspects weld quality, component alignment, and paint consistency [1]. Textile industries deploy vision systems to identify weaving defects, while food industries rely on hyperspectral imaging for contamination detection. Pharmaceutical companies use vision systems for label verification, blister inspection, and pill counting. These systems significantly reduce production downtime and enhance traceability.

5. Challenges and Future Directions

Machine vision systems face challenges such as inconsistent lighting, reflective surfaces, occlusion, and variations in product geometry. Overcoming these issues requires adaptive illumination, advanced image fusion, and multimodal sensing such as thermal and 3D imaging [4]. Future systems are expected to integrate explainable AI, robotic handling, and self-supervised learning to create fully autonomous inspection units capable of adapting to new product lines without extensive retraining.

6. Conclusion

Machine vision has transformed industrial quality inspection by providing speed, accuracy, and scalability. The integration of deep learning and edge AI has further enhanced its capabilities, enabling real-time decision-making and high reliability. As manufacturing becomes increasingly automated, machine vision will remain central to ensuring quality assurance, driving continuous innovation in imaging technologies, intelligent algorithms, and industrial integration.

References

- 1. S. Patel and K. Desai, "Industrial Quality Inspection Using AI-Based Vision Systems," IEEE Access, vol. 8, pp. 122301–122316, 2020.
- 2. M. Torres et al., "Illumination Models in Machine Vision Applications," Optics and Lasers in Engineering, vol. 134, pp. 1–14, 2020.
- 3. L. Zhao and H. Li, "Deep Learning for Industrial Defect Detection," IEEE Transactions on Industrial Informatics, vol. 17, no. 5, pp. 3285–3295, 2021.
- 4. A. Kumar, "Advances in Multimodal Machine Vision," Machine Vision and Applications, vol. 33, pp. 1–20, 2022.

© 2023 by the authors. Open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)