ISSN: 2582-5615

DOI: 10.36297/vw.applsci.v5i1.137

VW Applied Sciences, Volume: 5, Issue: 1, 04-06

Integration of Edge Computing Architectures for Real-Time Healthcare Monitoring

Dr. Nisar A Bukhari^{1*}

¹Associate Professor, Computer Science And Engineering, Centution University Of Technology And Management, Bubneshwar, India

*Authors Email: nisarbukhari.t@cutm.ac.in

Received: Jan 17, 2023 Accepted: Jan 18, 2023 Published online: Jan 19, 2023

Abstract: The demand for continuous and intelligent healthcare monitoring has intensified with the rise of chronic illnesses, aging populations, and the increasing need for real-time physiological assessment. Edge computing has emerged as a critical enabler of next-generation healthcare systems by bringing computational power closer to patient-side devices and reducing latency inherent in cloud-based processing. This review explores the architectures, models, and implementation strategies that enable edge-driven healthcare monitoring. The paper evaluates sensor integration methods, distributed analytics, adaptive learning algorithms, and communication topologies that support low-latency and energy-efficient monitoring. It also discusses hybrid models in which cloud and edge systems collaborate to enhance inference accuracy, optimize network traffic, and provide scalable health analytics. Major challenges—including data heterogeneity, interoperability, patient privacy, and cybersecurity—are examined alongside ongoing advancements such as federated learning, intelligent gateways, and AI-powered edge nodes. Case studies from telemedicine, cardiac monitoring, and emergency response systems illustrate the advantages of edge computing in delivering timely decision support. The review concludes by identifying future directions related to predictive diagnostics, autonomous care systems, and edge-integrated biosensor networks that will shape the future of personalized digital healthcare.

Keywords: Edge Computing, Healthcare Monitoring, IoT Sensors, Real-Time Analytics, Distributed AI

1. Introduction

Healthcare systems worldwide are transitioning toward continuous, proactive, and personalized monitoring enabled by intelligent sensing and computation. Traditional cloud-centric frameworks face challenges such as latency, bandwidth limitations, and vulnerability to network failures. To address these limitations, edge computing places processing capabilities closer to data sources, improving responsiveness and enabling fast detection of medical abnormalities. In real-time applications—such as arrhythmia detection, glucose monitoring, fall assessment, and emergency alerting—milliseconds can determine the difference between timely intervention and medical complications. Consequently, the integration of edge architectures with IoT-enabled medical devices has become a central element in modern digital health ecosystems [1]. By reducing the need to transmit raw data to remote servers, edge systems preserve bandwidth, enhance data privacy, and improve reliability.

2. Edge Architecture and Sensor Integration

Edge-driven healthcare monitoring relies on wearable biosensors, implantable devices, and ambient sensors that continuously gather physiological data. Edge gateways preprocess signals, perform noise reduction, extract features, and run inference algorithms using lightweight classifiers or deep learning models optimized for low-power hardware [2]. These components work collaboratively to deliver instant assessment of vital signs such as ECG, EEG, blood pressure, body temperature, and ${\rm SpO}_2$. This localized computation reduces dependence on cloud services, ensuring that critical alerts—such as ventricular tachycardia or hypoxic events—are generated without delay.

3. AI and Distributed Analytics at the Edge

Artificial intelligence enhances the predictive accuracy of monitoring systems when deployed on edge nodes. Quantized neural networks, mobile-optimized CNNs, and recurrent architectures are employed for real-time classification and anomaly detection [3]. Distributed analytics allow tasks to be partitioned between edge and cloud layers depending on computational requirements. For example, short-term trend analysis and threshold-based alerts can be executed at the edge, whereas long-term disease progression models andpopulation-level analytics are performed in the cloud. Hybrid AI pipelines significantly reduce energy consumption and offer adaptability across diverse healthcare environments.

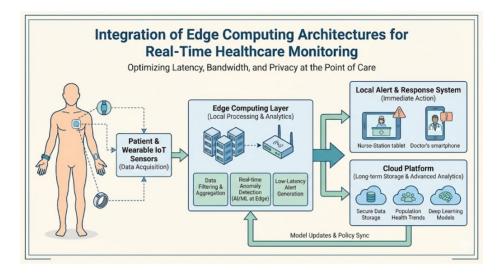


Fig. 1 Edge Computing Architectures

4. Security, Privacy, and Interoperability Challenges

Healthcare data is highly sensitive, making privacy preservation a major concern in distributed systems. Edge architectures incorporate techniques such as homomorphic encryption, differential privacy, and federated learning to ensure secure inference without centralized data aggregation [4]. Interoperability issues arise due to heterogeneous hardware, communication protocols, and vendor-specific architectures. Ensuring compliance with medical standards and secure communication is essential for system reliability.

5. Applications and Case Studies

Edge-enabled cardiac monitoring systems have demonstrated significant reduction in arrhythmia detection latency compared to cloud-only frameworks [3]. Wearable devices used in elderly care employ edge analytics to classify fall events and send immediate alerts. Telemedicine platforms integrate edge gateways to optimize video consultations and real-time vital sign streaming. Emergency response systems benefit from edge-based triaging that rapidly prioritizes high-risk patients [1]

6. Conclusion

Edge computing represents a transformative shift in healthcare monitoring by delivering low-latency processing, enhanced privacy, and robust resilience. Through intelligent inference at the network edge, healthcare systems become more responsive and capable of supporting continuous monitoring in both clinical and home environments. As hardware efficiency improves and AI models become more optimized, edge-based healthcare architectures will evolve into autonomous diagnostic and intervention systems. Future research will focus on integrating adaptive learning, energy-aware processing, and collaborative edge-cloud ecosystems to support predictive and personalized medicine.

References

1. P. S. Rathore and A. Ahmad, "IoT-Edge Integration for Smart Healthcare Systems," IEEE Access, vol. 9, pp. 67890–67910, 2021.

- 2. L. Kumar et al., "Wearable Sensor Fusion for Edge-Based Real-Time Monitoring," Biomedical Signal Processing and Control, vol. 68, pp. 102–119, 2022.
- 3. Y. Zhang and S. Lee, "Lightweight Neural Networks for Edge-Enabled Medical Diagnostics," IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 5, pp. 1580–1591, 2021.
- 4. K. De and R. Khan, "Privacy-Preserving Machine Learning in Distributed Healthcare," IEEE Transactions on Cloud Computing, vol. 10, no. 3, pp. 1501–1513, 2022.

© 2023 by the authors. Open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)