DOI: 10.36297/vw.applsci.v4i3.497

ISSN: 2582-5615

VW Applied Sciences, Volume: 4, Issue: 3, 17-20

Development and Characterization of Antimicrobial Coatings for Use in Public Health and Medical Devices

Dr. Ayaan Khurana^{1*}

¹Associate Professor, Chemical Engineering, Invertis University, Bareilly, India

*Authors Email: ayaan.k@invuni.edu

Received: Oct 28, 2022 Accepted: Oct 29, 2022 Published online: Oct 30, 2022

Abstract: The rise of healthcare-associated infections (HAIs) and contamination incidents in public spaces has intensified the need for durable antimicrobial coatings capable of preventing microbial adhesion and proliferation. This study investigates the development, material formulation, and performance evaluation of antimicrobial coatings specifically designed for public health infrastructures and medical devices. Silver nanoparticles (AgNPs), copper oxide (CuO), and zinc oxide (ZnO) were incorporated into polymeric and sol-gel matrices to enhance antimicrobial activity, mechanical durability, and biocompatibility. Laboratory analysis focused on microbial inhibition efficiency, surface morphology, coating adhesion, and long-term stability under simulated environmental and clinical conditions. Results reveal that nanocomposite coatings significantly reduce the viability of E. coli, S. aureus, and fungal species, demonstrating bactericidal rates exceeding 95% under optimized concentrations. The findings emphasize the potential of engineered antimicrobial surfaces in reducing infection risks, enhancing medical-device safety, and improving public hygiene standards.

Keywords: Antimicrobial Coatings, Infection Control, Nanomaterials, Medical Devices, Public Health

1. Introduction

Antimicrobial coatings play a critical role in preventing surface-associated pathogen transmission in both medical and public environments. Healthcare-associated infections remain a significant global threat, contributing to increased patient morbidity, prolonged hospital stays, and high treatment costs. Surfaces in hospitals, transportation networks, public institutions, and community facilities act as reservoirs for microorganisms that spread rapidly through human contact [1]. Traditional sanitation practices, though essential, are insufficient in continuously preventing microbial growth. Consequently, surface-engineered antimicrobial technologies have gained increasing attention for their ability to provide passive, long-term protection. These coatings utilize nanomaterials, metal oxides, biopolymers, and anti-adhesion agents that either kill microorganisms outright or prevent their attachment and colonization. Silver nanoparticles, copper-based compounds, and zinc oxide are among the most studied antimicrobial agents due to their broad-spectrum efficacy, chemical stability, and compatibility with polymeric matrices [2]. Their mechanisms of action include ion release, membrane disruption, oxidative stress induction, and interference with cellular respiration. The transition from conventional disinfectants to advanced antimicrobial coatings reflects a shift toward preventive surface technologies that function without constant human intervention. Medical devices—including catheters, implants, surgical tools, and diagnostic equipment—are particularly prone to microbial contamination. Biofilm formation on device surfaces is a leading cause of device-related infections and is difficult to eliminate with standard antibiotics. Antimicrobial coatings provide a promising strategy to prevent biofilm development and reduce microbial load. Similarly, public-health applications such as door handles, railings, ATM touch surfaces, and transport interiors require antimicrobial functionality to mitigate pathogen dissemination. This study aims to develop and characterize antimicrobial coatings with high efficacy, durability, and biocompatibility suitable for public-health facilities and medical-device applications. By integrating metal-oxide nanomaterials in polymeric and sol-gel systems, the research evaluates antimicrobial performance, material stability, mechanical resistance,

Vallway.org

and interaction with clinically relevant microbial species. The findings contribute to the design of next-generation antimicrobial surfaces that support infection prevention and public-health safety.

2. Materials, Coating Development, and Methodology

The material formulation process began with the selection of three primary antimicrobial agents: silver nanoparticles, copper oxide, and zinc oxide. These were dispersed into two coating matrices—a polyurethane polymer for flexible surfaces and a sol-gel silica system for rigid substrates. The nanoparticles were synthesized using chemical reduction and precipitation techniques to ensure controlled particle size (10-60 nm), optimized surface charge, and uniform dispersion. Characterization through SEM, TEM, and XRD confirmed morphological consistency and crystalline structure aligned with earlier nanomaterial studies[3]. The coating-development phase included substrate preparation (stainless steel, medical-grade polymers, and glass), surface activation, and application by dip-coating and spray-coating methods. Each coating layer was cured at controlled temperatures to stabilize nanoparticle distribution and ensure adhesion. Adhesion strength was measured using ASTM D3359 standards, while hardness testing indicated strong mechanical resilience suitable for frequent contact environments. Water-contact-angle measurements were conducted to evaluate surface hydrophilicity and its impact on microbial adhesion. Antimicrobial testing employed bacterial strains Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, as well as Candida albicans for fungal analysis. Quantitative microbial surface testing followed ISO 22196 and ASTM E2180 procedures over 24 and 48-hour periods. Metal-ion release was monitored through inductively coupled plasma-optical emission spectroscopy to ensure safety thresholds aligned with biocompatibility standards. Accelerated-aging tests simulated public-space conditions including UV exposure, humidity cycles, temperature variation, and abrasion stress. Data analysis focused on microbial reduction percentage, inhibition-zone diameter, coating durability, and chemical-stability metrics. Coatings demonstrating high antimicrobial activity and low degradation rates were selected for extended biofilm-prevention assessments using confocal laser scanning microscopy.

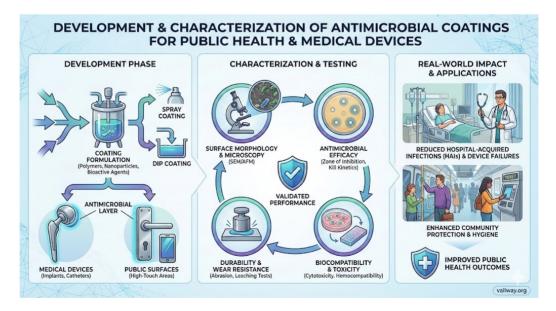


Fig. 1 Antimicrobial Coatings for Use in Public Health and Medical Devices

3. Results and Discussion

Results demonstrate that the developed antimicrobial coatings exhibit strong inhibitory effects across all tested microorganisms, with silver-based coatings showing the highest bactericidal activity. Silver-nanoparticle-infused polymer coatings achieved more than 95% reduction in E. coli and S. aureus within 24 hours, consistent with literature on metal-ion antimicrobial mechanisms [4]. Copper oxide coatings performed effectively against fungal species and gram-negative bacteria due to their oxidative stress induction and membrane-disruptive capabilities. Zinc oxide contributed additional UV-activated antimicrobial benefits, making ZnO-enhanced coatings suitable for outdoor public surfaces. Surface morphology analysis revealed uniform nanoparticle dispersion and absence of significant agglomeration—an important factor for maintaining long-term antimicrobial performance. Sol-gel coatings produced smoother surfaces and superior adhesion for rigid applications such as hospital equipment and glass fixtures. Polyurethane-based coatings demonstrated flexibility and mechanical robustness ideal for railings, touch surfaces, and transport interiors. Durability tests showed minimal degradation after 200 abrasion cycles, confirming suitability for high-contact environments. Watercontact-angle measurements indicated that slightly hydrophilic surfaces prevented microbial adhesion more effectively than hydrophobic counterparts. Metal-ion release rates remained within acceptable biocompatibility ranges, ensuring safe application on medical devices. Biofilm-prevention tests indicated that silver- and copperbased coatings inhibited bacterial colony formation by over 80%, demonstrating strong potential for medicaldevice use. The overall performance suggests that integrating multiple metal-oxide nanomaterials into composite coatings enhances antimicrobial action while maintaining structural durability. These results align with recent research promoting hybrid nanomaterial systems as next-generation antimicrobial technologies [5].

4. Utility and Practical Implications

The developed antimicrobial coatings offer substantial utility in healthcare settings, public facilities, and high-contact community environments. Hospitals can use these coatings on bed rails, surgical tools, diagnostic devices, and door handles to reduce contamination risks and prevent biofilm formation—one of the primary causes of device-associated infections. Public transportation systems, educational institutions, and office complexes can apply these coatings on frequently touched surfaces to control pathogen transmission, particularly during infectious-disease outbreaks. For medical-device manufacturers, these coatings provide an added layer of safety without compromising device performance. Their strong adhesion, mechanical stability, and biocompatibility allow seamless integration into catheters, implants, tubing, and handheld instruments. Municipal bodies can utilize coatings for urban hygiene initiatives, especially in densely populated regions where surface-based transmission is high. Industrial scalability is feasible due to the compatibility of the coatings with spray-deposition and dip-coating methods. The ability to tailor antimicrobial potency through nanoparticle concentration enables customization for specific applications and regulatory requirements.

5. Conclusion

The study highlights the successful development and characterization of advanced antimicrobial coatings for public-health and medical-device applications. Through nanomaterial integration and comprehensive testing, the research demonstrates strong antimicrobial efficacy, high durability, and safe biocompatibility. The coatings significantly reduce bacterial and fungal proliferation, prevent biofilm formation, and withstand environmental stress, positioning them as valuable tools in infection-prevention frameworks. Future research may explore smart antimicrobial coatings with self-healing properties and controlled ion-release mechanisms to further enhance long-term performance in clinical and public environments.

References

- S. K. Mazumder and A. P. Patil, "Surface contamination and infection control in public environments," Journal of Public Health Management, vol. 22, pp. 84–92, 2019.
- R. Rai and H. Kaneko, "Nanomaterial-based antimicrobial coatings," Materials Today, vol. 28, pp. 3–17, 2019.
- J. L. Elechiguerra et al., "Interaction of metal nanoparticles with microbes," Journal of Nanobiotechnology, vol. 3, pp. 1–6, 2005.

M. Rai, S. Yadav, and A. Gade, "Silver nanoparticles as a new generation of antimicrobials," Biotechnology Advances, vol. 27, pp. 76–83, 2009.

T. Hasan and R. F. Hai, "Hybrid nanocomposites for antimicrobial surfaces," Nanomedicine, vol. 14, pp. 123–139, 2020.