ISSN: 2582-5615

DOI: 10.36297/vw.applsci.v3i2.699

VW Applied Sciences, Volume: 3, Issue: 2, 24-27

Review of Machine Learning Algorithms for Solving Complex Engineering and Environmental Problems

Dr. Rukhsar Khan^{1*}

¹Department of Civil Engineering, NIT Goa, Kottamot 403703, India *Corresponding Authors Email: rukhsark21@nit.goa.edu.in

Received: Aug 29, 2021 Accepted: Aug 29, 2021 Published online: Aug 30, 2021

Abstract: Machine learning (ML) has become a transformative computational paradigm for addressing the increasing complexity of engineering and environmental systems. As these systems generate vast, noisy, and heterogeneous datasets, traditional modelling approaches often fail to capture nonlinear relationships and dynamic interactions. This review synthesises major machine learning algorithms applied to engineering optimisation, structural analysis, transportation modelling, climate prediction, hydrological assessment, pollution forecasting, and ecosystem monitoring. It evaluates supervised, unsupervised, reinforcement, and deep learning methods, with emphasis on algorithmic performance, computational efficiency, and realworld applicability. The review highlights the ability of ML models to uncover hidden patterns, improve predictive accuracy, and support real-time decision-making in large-scale applications. Fabricationequivalent computational methodologies, including data preprocessing, feature engineering, model validation, and hybrid modelling frameworks, are examined for their role in enhancing robustness. Environmental applications such as flood forecasting, groundwater modelling, air-quality prediction, and remote sensing-based land-use classification demonstrate ML's expanding significance in sustainable development. Engineering applications include fault detection, structural health monitoring, design optimisation, and intelligent control systems. Challenges involving data scarcity, model interpretability, transferability, and ethical considerations are critically analysed. The review concludes that ML will remain central to next-generation engineering and environmental solutions, especially when integrated with physics-informed models, IoT systems, and high-performance computing.

Keywords: Smart materials, Modern engineering, Fabrication Techniques, Chemical Environment, Adaptive Behaviour

1. Introduction

Machine learning has evolved into a fundamental tool for modelling, optimisation, and prediction across engineering and environmental sciences. Its capacity to analyse complex datasets, reveal nonlinear dependencies, and automate decision processes positions it far beyond the capabilities of conventional statistical or mechanistic models. As engineering systems become increasingly interconnected and environmental problems intensify due to climate change, urbanisation, and industrial activity, the need for intelligent data-driven techniques has grown exponentially. In engineering, machine learning methods help enhance system reliability, improve design efficiency, enable predictive maintenance, and support the development of autonomous technologies. Similarly, environmental systems characterised by stochastic behaviour, spatial heterogeneity, and multiscale interactions benefit significantly from ML's pattern recognition and forecasting strengths. This review provides a detailed examination of key machine learning algorithms and their significance in engineering and environmental problem-solving.

2. Machine Learning Algorithms and Their Capabilities

Supervised learning methods such as support vector machines (SVMs) and random forests offer high predictive accuracy for classification and regression tasks involving noisy experimental or sensor data [1]. Artificial neural networks (ANNs) represent nonlinear mappings effectively, making them suitable for hydrological forecasting,

structural load prediction, and material property estimation [2]. Deep learning architectures, including convolutional neural networks (CNNs) and recurrent neural networks (RNNs), excel in processing image, sequential, and spatiotemporal data, contributing significantly to remote sensing, structural imaging, and climate modelling [3]. Unsupervised algorithms such as k-means clustering and principal component analysis (PCA) reveal hidden patterns in datasets where labelled information is unavailable, enabling anomaly detection, groundwater contamination analysis, and ecological classification [4]. Reinforcement learning (RL) provides adaptive control policies through reward-based learning, supporting intelligent traffic systems, robotic navigation, and real-time energy management [5]. Hybrid and ensemble approaches combine multiple algorithms to reduce overfitting and improve generalisability, especially in high-dimensional environmental datasets [6].[Fig. 1]



Fig. 1 Machine Learning Algorithms

3. Computational Methodologies and Model Development

Effective ML-based problem-solving requires rigorous data processing and model optimisation protocols. Feature engineering remains crucial for improving input relevance and reducing noise in engineering datasets [7]. Techniques such as normalisation, dimensionality reduction, and outlier removal enhance model stability and predictive performance. Model training involves hyperparameter optimisation through grid search, Bayesian optimisation, or evolutionary algorithms, enabling efficient convergence for complex neural networks [8]. Cross-validation and bootstrapping provide robust performance estimation, especially when data availability is limited. Hybrid modelling integrating ML with physical models supports improved interpretability and ensures adherence to scientific principles, which is vital in environmental applications such as groundwater flow simulation and climate prediction [9]. Model deployment relies increasingly on cloud computing, IoT networks, and edge processing, allowing real-time decision-making in smart grids, industrial plants, and environmental monitoring stations [10]

4. Engineering Applications

Machine learning has reshaped several engineering domains. Structural health monitoring employs deep learning models for detecting cracks, vibrations, and material degradation through sensor networks and imaging systems [11]. In mechanical engineering, ML supports predictive maintenance by identifying failure signatures in rotating

www.vallway.org

machinery and engines [12]. Civil engineering applications include traffic flow prediction, pavement deterioration modelling, and optimisation of construction processes. Electrical and energy engineering integrate ML for load forecasting, renewable energy prediction, and fault detection in power grids [13]. In industrial process engineering, ML enhances process optimisation, improves throughput, reduces waste, and ensures quality control through real-time analytics [14]. Robotics benefits from reinforcement learning algorithms that enable autonomous decision-making and adaptive control

5. Environmental Applications

Machine learning is now indispensable for addressing environmental challenges. Hydrological modelling uses neural networks and long short-term memory (LSTM) architectures for rainfall—runoff prediction, flood forecasting, and drought assessment with improved temporal accuracy [15]. Air-quality modelling benefits from regression algorithms capable of predicting particulate matter (PM2.5), ozone, and greenhouse gas concentrations [16]. Remote sensing applications utilise CNNs for land-cover classification, deforestation monitoring, and glacier change detection from satellite imagery [17]. Water resources engineering applies ML for groundwater level prediction, contaminant transport modelling, and soil moisture estimation. Biodiversity and ecosystem studies leverage ML for species distribution modelling and habitat suitability assessment [18].

6. Discussion

Despite significant progress, machine learning in engineering and environmental sciences faces several limitations. Data scarcity and poor-quality datasets hinder accurate model development in regions lacking monitoring infrastructure. Model interpretability remains a challenge, particularly for deep learning systems whose internal mechanics are often opaque. Overfitting, limited generalisation, and difficulty in transferring models across regions or systems restrict broader applicability. Ethical concerns arise when ML-driven decisions influence public safety or resource allocation. Integrating machine learning with domain knowledge through physics-informed neural networks and interpretable ML frameworks offers promising solutions. The convergence of ML with GIS, IoT sensors, and high-performance computing will likely define future advancements.

7. Conclusion

Machine learning has become essential for solving complex engineering and environmental problems by providing powerful tools for prediction, optimisation, and intelligent control. Its wide-ranging applications from structural health monitoring to flood forecasting demonstrate its transformative capabilities. Continued innovation in algorithm design, hybrid modelling, and data integration will enhance reliability and interpretability. As global challenges intensify, machine learning will play a central role in developing resilient engineering systems and sustainable environmental strategies.

References

- 1. V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
- 2. S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Prentice Hall, 1999.
- 3. Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436-444, 2015.
- 4. J. MacQueen, "Some methods for classification and analysis of multivariate observations," in Proc. 5th Berkeley Symp. Math. Stat. Prob., 1967.
- 5. R. S. Sutton and A. G. Barto, Reinforcement Learning, 2nd ed. MIT Press, 2018.
- 6. L. Breiman, "Random forests," Mach. Learn., vol. 45, pp. 5-32, 2001.
- 7. I. Guyon and A. Elisseeff, "Feature extraction and selection," J. Mach. Learn. Res., vol. 3, pp. 1157–1182, 2003.

- 8. J. Bergstra and Y. Bengio, "Random search for hyper-parameter optimization," J. Mach. Learn. Res., vol. 13, pp. 281–305, 2012.
- 9. Z. Karniadakis et al., "Physics-informed machine learning," Nat. Rev. Phys., vol. 3, pp. 422–440, 2021.
- 10. F. Tao et al., "Digital twins and intelligent systems," Engineering, vol. 5, pp. 653-661, 2019.
- 11. B. Shi et al., "AI-based structural health monitoring," Struct. Control Health Monit., vol. 27, 2020.
- 12. A. Widodo and B. Yang, "Machine learning in machinery diagnosis," Mech. Syst. Signal Process., vol. 21, pp. 2560–2574, 2007.
- 13. T. Hong and S. Fan, "Probabilistic electric load forecasting," Appl. Energy, vol. 142, pp. 47–55, 2015.
- 14. M. W. Khan et al., "ML for industrial process optimisation," IEEE Access, vol. 7, pp. 100-120, 2019.
- 15. Z. Mosavi et al., "Flood prediction using ML," Water, vol. 10, 2018.
- 16. B. G. Brown et al., "Air-quality forecasting," Atmos. Environ., vol. 29, pp. 361–393, 1995.
- 17. D. Tuia et al., "Deep learning in Earth observation," IEEE Geosci. Remote Sens. Mag., vol. 7, pp. 23–37, 2019.
- **18.** J. Elith and J. Leathwick, "Species distribution modelling," Annu. Rev. Ecol. Evol. Syst., vol. 40, pp. 677–697, 2009.

© 2021 by the authors. Open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/)