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1. Introduction

Machine learning has evolved into a fundamental tool for modelling, optimisation, and prediction across
engineering and environmental sciences. Its capacity to analyse complex datasets, reveal nonlinear dependencies,
and automate decision processes positions it far beyond the capabilities of conventional statistical or mechanistic
models. As engineering systems become increasingly interconnected and environmental problems intensify due
to climate change, urbanisation, and industrial activity, the need for intelligent data-driven techniques has grown
exponentially. In engineering, machine learning methods help enhance system reliability, improve design
efficiency, enable predictive maintenance, and support the development of autonomous technologies. Similarly,
environmental systems characterised by stochastic behaviour, spatial heterogeneity, and multiscale interactions
benefit significantly from ML’s pattern recognition and forecasting strengths. This review provides a detailed
examination of key machine learning algorithms and their significance in engineering and environmental
problem-solving.

2. Machine Learning Algorithms and Their Capabilities

Supervised learning methods such as support vector machines (SVMs) and random forests offer high predictive
accuracy for classification and regression tasks involving noisy experimental or sensor data [1]. Artificial neural
networks (ANNs) represent nonlinear mappings effectively, making them suitable for hydrological forecasting,
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structural load prediction, and material property estimation [2]. Deep learning architectures, including
convolutional neural networks (CNNs) and recurrent neural networks (RNNs), excel in processing image,
sequential, and spatiotemporal data, contributing significantly to remote sensing, structural imaging, and climate
modelling [3]. Unsupervised algorithms such as k-means clustering and principal component analysis (PCA)
reveal hidden patterns in datasets where labelled information is unavailable, enabling anomaly detection,
groundwater contamination analysis, and ecological classification [4]. Reinforcement learning (RL) provides
adaptive control policies through reward-based learning, supporting intelligent traffic systems, robotic navigation,
and real-time energy management [5]. Hybrid and ensemble approaches combine multiple algorithms to reduce
overfitting and improve generalisability, especially in high-dimensional environmental datasets [6].[Fig. 1]

Fig. 1 Machine Learning Algorithms

3. Computational Methodologies and Model Development

Effective ML-based problem-solving requires rigorous data processing and model optimisation protocols.
Feature engineering remains crucial for improving input relevance and reducing noise in engineering datasets [7].
Techniques such as normalisation, dimensionality reduction, and outlier removal enhance model stability and
predictive performance. Model training involves hyperparameter optimisation through grid search, Bayesian
optimisation, or evolutionary algorithms, enabling efficient convergence for complex neural networks [8]. Cross-
validation and bootstrapping provide robust performance estimation, especially when data availability is limited.
Hybrid modelling integrating ML with physical models supports improved interpretability and ensures
adherence to scientific principles, which is vital in environmental applications such as groundwater flow
simulation and climate prediction [9]. Model deployment relies increasingly on cloud computing, IoT networks,
and edge processing, allowing real-time decision-making in smart grids, industrial plants, and environmental
monitoring stations [10]

4. Engineering Applications

Machine learning has reshaped several engineering domains. Structural health monitoring employs deep learning
models for detecting cracks, vibrations, and material degradation through sensor networks and imaging systems
[11]. In mechanical engineering, ML supports predictive maintenance by identifying failure signatures in rotating
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machinery and engines [12]. Civil engineering applications include traffic flow prediction, pavement
deterioration modelling, and optimisation of construction processes. Electrical and energy engineering integrate
ML for load forecasting, renewable energy prediction, and fault detection in power grids [13]. In industrial
process engineering, ML enhances process optimisation, improves throughput, reduces waste, and ensures
quality control through real-time analytics [14]. Robotics benefits from reinforcement learning algorithms that
enable autonomous decision-making and adaptive control

5. Environmental Applications

Machine learning is now indispensable for addressing environmental challenges. Hydrological modelling uses
neural networks and long short-term memory (LSTM) architectures for rainfall–runoff prediction, flood
forecasting, and drought assessment with improved temporal accuracy [15]. Air-quality modelling benefits from
regression algorithms capable of predicting particulate matter (PM2.5), ozone, and greenhouse gas
concentrations [16]. Remote sensing applications utilise CNNs for land-cover classification, deforestation
monitoring, and glacier change detection from satellite imagery [17]. Water resources engineering applies ML
for groundwater level prediction, contaminant transport modelling, and soil moisture estimation. Biodiversity
and ecosystem studies leverage ML for species distribution modelling and habitat suitability assessment [18].

6. Discussion

Despite significant progress, machine learning in engineering and environmental sciences faces several
limitations. Data scarcity and poor-quality datasets hinder accurate model development in regions lacking
monitoring infrastructure. Model interpretability remains a challenge, particularly for deep learning systems
whose internal mechanics are often opaque. Overfitting, limited generalisation, and difficulty in transferring
models across regions or systems restrict broader applicability. Ethical concerns arise when ML-driven decisions
influence public safety or resource allocation. Integrating machine learning with domain knowledge through
physics-informed neural networks and interpretable ML frameworks offers promising solutions. The
convergence of ML with GIS, IoT sensors, and high-performance computing will likely define future
advancements.

7. Conclusion

Machine learning has become essential for solving complex engineering and environmental problems by
providing powerful tools for prediction, optimisation, and intelligent control. Its wide-ranging applications from
structural health monitoring to flood forecasting demonstrate its transformative capabilities. Continued
innovation in algorithm design, hybrid modelling, and data integration will enhance reliability and
interpretability. As global challenges intensify, machine learning will play a central role in developing resilient
engineering systems and sustainable environmental strategies.
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