ISSN: 2582-5615

DOI: 10.36297/vw.applsci.v3i2.129

VW Applied Sciences, Volume: 3, Issue: 2, 01-04

Recent Trends and Future Directions in Solar and Wind Renewable Energy Technologies

Manish Sharma^{1*}

¹Department of Civil Engineering, NIT Goa, Kottamot 403703, India *Corresponding Authors Email: manishle121@nit.goa.edu.in

Received: May 12, 2021 Accepted: May 13, 2021 Published online: May 15, 2021

Abstract: The global energy landscape is undergoing a rapid transformation, driven by the need to reduce carbon emissions, enhance energy security, and ensure sustainable development. Solar and wind energy technologies have emerged as leading contributors to this transition due to their scalability, declining costs, and environmental benefits. Recent advances in photovoltaic materials, including perovskite-silicon tandem cells and bifacial modules, have significantly improved conversion efficiency and energy yield, while innovations in building-integrated and transparent photovoltaics enable broader urban applications [1], [6]. Wind energy has similarly benefited from taller and more aerodynamically optimized turbines, floating offshore platforms, and intelligent control systems that enhance reliability and reduce maintenance costs [2], [7]. Despite these technological improvements, integrating variable renewable energy into power grids remains challenging, necessitating advanced forecasting techniques, hybrid solar-wind systems, and energy storage solutions to stabilize supply [4], [8]. Emerging research directions emphasize the use of artificial intelligence, digital twins, and sustainable material development to improve system performance, lifecycle sustainability, and operational efficiency [3], [5]. This review synthesizes current trends in solar and wind technologies, evaluates ongoing challenges, and outlines future directions for research and deployment. By bridging material science, engineering innovations, and system-level strategies, the study provides a roadmap for advancing solar and wind energy toward a resilient, sustainable, and economically viable energy future.

Keywords: Solar Energy, Wind Energy, Renewable Energy, Engineering Technologies, Global Energy Landscape

1. Introduction

Solar and wind energy have become central to the global shift toward cleaner and more resilient energy systems. Their rapid growth is driven not only by falling technology costs but also by rising concerns about climate change, energy security, and long-term sustainability. As these technologies mature, research has expanded beyond improving individual components such as photovoltaic cells or turbine blades to understanding how they operate within larger energy systems [1], [2]. This broader perspective is increasingly important because integrating variable renewable resources into existing grids requires advances in forecasting, power electronics, storage, and system-level coordination [4], [8]. In recent years, both solar and wind technologies have experienced notable progress. Advancements in materials, aerodynamics, control strategies, and digital optimization tools have improved reliability and energy yield [1], [2]. At the same time, hybrid systems that combine solar and wind power are gaining attention for their ability to reduce variability and support more stable energy supply [5], [9]. Yet challenges remain, including intermittency, long-term material performance, and the need for smarter infrastructure capable of managing high shares of renewable energy. This review examines these recent developments while also considering how emerging research directions such as artificial intelligence, digital twins, sustainable materials, and hybrid architectures might shape the future landscape of solar and wind based energy systems [3], [5].

2. Recent Trends in Solar Energy Technologies

2

Solar energy has witnessed substantial advancements in both photovoltaic (PV) and thermal systems. In PV, the development of perovskite-silicon tandem cells has enabled laboratory efficiencies surpassing 30%, while bifacial modules, capable of harvesting light from both sides, have improved real-world energy yield [1], [6]. Innovations in building-integrated photovoltaics (BIPV) and transparent solar coatings allow integration into urban environments without compromising aesthetics [1], [6]. Thermal solar collectors have benefited from optimized absorber geometries, artificial roughness, and hybrid systems incorporating phase-change materials, which improve heat transfer and storage capacity [6]. Beyond component-level improvements, lifecycle assessments and long-term degradation studies have gained prominence to ensure system reliability. The use of predictive modeling and machine learning assists in optimizing solar array layout, tilt angles, and energy yield forecasting, bridging the gap between lab-scale innovations and field deployment [4], [9]. These trends demonstrate a shift toward more intelligent, durable, and context-adaptive solar energy systems.[Fig. 1]

Fig. 1 Solar and wind energy technologies

3. Recent Trends in Wind Energy Technologies

Wind energy development focuses on enhancing efficiency, reliability, and deployment in challenging environments. Taller turbines and longer, aerodynamically optimized blades capture higher-altitude wind, increasing energy output [2], [7]. Floating offshore wind platforms allow deployment in deeper waters with stronger, more stable wind resources, expanding the geographical scope of wind energy [2], [7]. Structural optimization using artificial intelligence and advanced computational modeling has led to lighter, stronger support towers and blades, while condition-monitoring systems and predictive maintenance techniques improve operational reliability [3], [4]. Additionally, wind farm layout optimization, leveraging computational fluid dynamics and machine learning, enhances wake management and overall energy capture [2], [5]. Collectively, these trends reflect a move toward high performance, intelligent, and resilient wind energy technologies capable of large scale deployment.

4. Forecasting, Grid Integration, and Hybrid System

Variability remains a central challenge in integrating solar and wind energy into power grids. Advanced forecasting methods, particularly AI-driven predictive models, improve short- and medium-term power generation predictions, reducing uncertainty in system operations [3], [4]. Hybrid solar-wind systems exploit complementary generation profiles windier nights and sunnier days to stabilize output, mitigate intermittency, and reduce reliance on energy storage [5], [9]. Energy storage, including batteries and thermal storage, coupled

www.vallway.org

with smart grid technologies, enhances flexibility and resilience of renewable energy systems [4], [8]. Integration of hybrid systems into microgrids and distributed energy networks allows optimized energy management at local and regional scales. These developments underscore the importance of system-level coordination, intelligent control, and adaptive planning in achieving high renewable penetration.

5. Challenges and Barriers

Despite technological advancements, solar and wind energy face several persistent challenges. Photovoltaics contend with material degradation, especially in perovskites, environmental sustainability, and efficiency losses under real-world conditions [1], [6]. Wind energy must manage structural stress, offshore deployment risks, and logistical challenges in transporting large components [2], [7]. Both technologies require robust forecasting models, reliable grid integration frameworks, and cost-effective storage solutions [4], [8]. Furthermore, policy, regulatory, and financial barriers can slow adoption, highlighting the need for coordinated efforts between technology developers, grid operators, and policymakers [5], [9].

6. Future Directions

Future research and deployment of solar and wind technologies emphasize artificial intelligence, digital twins, and sustainable materials. AI can enhance predictive maintenance, optimize operational performance, and support real-time grid integration [3], [4]. Digital twins allow virtual simulation of solar and wind farms, aiding in performance monitoring and scenario analysis [5]. Emerging sustainable materials, such as lead-free perovskites and recyclable components, aim to reduce environmental impacts and improve lifecycle performance [1], [6]. Integration with energy storage and hybrid configurations will maximize efficiency and grid stability [8], [9]. Decentralized grids, microgrids, and hybrid renewable systems will allow for resilient energy distribution. Collectively, these approaches point toward a future where renewable energy systems are efficient, reliable, adaptive, and sustainable.

7. Conclusion

Solar and wind energy technologies have advanced significantly, yet their full potential depends on addressing challenges related to intermittency, material durability, and system integration [1], [2], [4]. By combining technological innovation with intelligent system management, predictive modeling, and sustainable design, the next generation of renewable energy systems promises to be resilient, efficient, and widely deployable [3], [5]. Continued research and deployment of hybrid, AI-enhanced, and sustainable solutions will be critical to meeting global decarbonization goals [7], [9].

References

- 1. D. Intal and A. U. Ebong, "Thin-Film Solar Photovoltaics: Trends and Future Directions, arXiv, 2025. [Online]. Available: https://arxiv.org/abs/2508.05589
- 2. J. A. Ribeiro et al. "Offshore Wind Turbine Tower Design and Optimization: A Review and AI-Driven Future Directions, arXiv, 2024. [Online]. Available: https://arxiv.org/abs/2502.02594
- 3. T. R. Razak et al., "Artificial Intelligence in Renewable Energy: A Systematic Review of Trends in Solar, Wind, and Smart Grid Applications," Research & Reviews in Sustainability, 2025. I. B.
- 4. Benitez and J. G. Singh, "Machine Learning Applications in Forecasting Solar PV and Wind Turbine Power Output," Journal of Electrical Systems & Information Technology, 2025. [Online]. Available: https://link.springer.com/article/10.1186/s43067-025-00239-4
- 5. X. Liu, "Principles and Technologies of Wind-Solar Complementary Systems: Optimization Strategies and Future Trends," Applied and Computational Engineering, 2024. "Solar Collectors for a Sustainable Future: Innovations and Energy Efficiency Trends, Discover Applied Sciences, 2025. [Online]. Available: https://link.springer.com/article/10.1007/s42452-025-07590-1

- 6. K. D. C. Sankalpa et al., Technology Engineering, 2024. "Wind Energy Technologies: A Complete Review, J. Research
- 7. "State of the Art for Solar and Wind Energy-Forecasting Methods for Sustainable Grid Integration," Current Sustainable/Renewable Energy Reports, 2025.
- 8. M. Kumar et al., "Design and Optimization of Solar-Wind Hybrid Power Systems: A Comprehensive Review," Int. J. Current Advanced Research, 2025.

© 2021 by the authors. Open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/)