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1. Introduction 

The global energy system occupies an essential and decisive role in all sectors of modern society, a factor 

exacerbated by sustained population increases and a vital, continuous demand for power [1]. In response to the 

escalating climate crisis and the urgent need for decarbonization, the backbone of a sustainable energy supply lies 

in the rapid scaling up and integration of intermittent Renewable Energy Sources (RES), primarily wind and solar 

power [2]. This transition, however, introduces a fundamental operational challenge: the inherent stochastic factors 

and variability of RES generation make balancing supply and demand significantly more complex compared to 

traditional, controllable fossil fuel sources [3]. To accelerate the integration process and improve the methods of 

responding to the increase in energy demand while maintaining grid stability, the utilization of models and 

algorithms based on artificial intelligence (AI) has become both common and mandatory in the energy sector. The 

transformative potential of AI is recognized as critical for shaping the future of sustainable infrastructure and 

construction practices globally [4-5]. 

Artificial intelligence encompasses a diverse set of computational techniques, including Machine Learning (ML), 

Deep Learning (DL), and Reinforcement Learning (RL), all applied to enhance the efficiency, reliability, and 

security of energy infrastructure [6]. The application of AI spans the entire energy value chain. Core applications 

include forecasting energy generation and load demand, optimizing energy systems, detecting faults, and managing 

dynamic energy storage [7]. 

The advanced development of DL algorithms, such as Convolutional Neural Networks (CNNs) and Long Short-

Term Memory (LSTM) networks, is particularly significant. These models are generally more accurate and exhibit 

lower error rates than traditional methods, substantially increasing the capacity of the system to solve complex 

problems arising from the integration of high-penetration RES [1]. The necessity for AI is underscored by its 

capability to process vast quantities of data generated by sensors and smart grids, enabling real-time monitoring 

and advanced predictive analytics [6-9]. 
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Abstract:  Artificial Intelligence (AI) has emerged as a transformative technology offering essential solutions 

for optimizing sustainable energy systems and accelerating global decarbonization. This scientific literature 

review systematically examines advanced Machine Learning (ML), Deep Learning (DL), and Reinforcement 

Learning (RL) techniques deployed across renewable energy infrastructure. The analysis confirms the 

superiority of DL architectures, such as Hybrid Deep Neural Networks (HDNNs), in complex time-series 

forecasting, significantly improving the accuracy of solar and wind power predictions. Furthermore, RL 

algorithms have proven critical for dynamic energy management, achieving substantial operational 

improvements, including a 23.5% increase in cost savings and a 78.69% reduction in carbon emissions in 

Battery Energy Storage System (BESS) operation. AI applications also extend to critical operational control, 

enabling predictive maintenance for wind turbines and enhancing PV energy efficiency by 15–20% through 

automated fault detection. While the technical feasibility is robust, the review identifies critical systemic 

challenges, including data standardization, high computational costs, cybersecurity risks , and the necessity of 

developing standardized protocols and Safe RL frameworks to ensure the resilient and scalable 

implementation required for the full energy transition. 
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1.2. Scope and Contribution of this Review to Scientific Literature 

This review provides a comprehensive and detailed examination of advanced ML and DL models applied within 

contemporary energy systems. A particular focus is placed on DL algorithms that have received less attention in 

previous studies, such as Recurrent Neural Networks (RNN), Adaptive Network-based Fuzzy Inference Systems 

(ANFIS), Deep Belief Networks (DBN), and Wavelet Neural Networks (WNN) [1]. A key contribution of this 

work is the synthesis of quantitative performance metrics, such as the Root Mean Square Error (RMSE) and the 

Coefficient of Determination (), across disparate studies. This synthesis facilitates a clearer, evidence-based 

comparative analysis of algorithmic efficacy, a crucial component often lacking in broad surveys [10]. Furthermore, 

this analysis aims to identify critical research gaps, focusing on challenges related to large-scale AI system 

integration, standardization protocols, economic viability in diverse markets, and ethical dimensions. 

2. Review Methodology and Literature Selection 

2.1. Search Strategy and Database Selection 

The literature selection process was designed to ensure the inclusion of high-quality, peer-reviewed scientific 

sources. The research protocol targeted major academic databases and platforms [8].The search strategy employed 

complex logical operators combining keywords related to computational methods and energy systems. Key search 

strings included combinations of: ("artificial intelligence" OR "machine learning" OR "reinforcement learning") 

AND ("renewable energy" OR "smart grid" OR "energy storage" OR "demand response" OR "power system") 

[11-15] This approach was necessary to capture the multidisciplinary nature of AI applications in energy. 

2.2. Inclusion and Exclusion Criteria for High-Quality Research 

Inclusion criteria established a focus on recent research, primarily articles published between 2015 and 2025, to 

capture the latest advancements and practical applications. Only peer-reviewed articles detailing explicit 

methodologies, experimental designs, and quantitative performance results were considered [14]. The journals 

most frequently cited within the captured dataset, such as IEEE Transactions on Transportation Electrification, 

Journal of Power Sources, Sensors, and Sustainability, reflect a strong focus on high-impact research within 

electrical engineering, electrochemical technology, sensor integration, and sustainable practices [8]. This focused 

approach ensures the review addresses the most relevant and high-quality research within the domain. 

2.3. Classification of AI Techniques and Application Domains 

For clarity and structured analysis, the review classifies the applied computational methods into three major 

categories based on their functional architecture: 

1. Classical Machine Learning (ML): This category includes algorithms such as Support Vector Machines 

(SVM), Random Forest (RF), and Gradient Boosting Regressors (GBR). These techniques are widely 

used for prediction and classification tasks, demonstrating robustness across various data types. 

2. Deep Learning (DL): Encompassing complex multi-layered neural networks, this includes 

Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, Hybrid Deep 

Neural Networks (HDNNs), and Deep Belief Networks (DBNs). DL is particularly valued for improved 

feature extraction and addressing issues like the gradient disappearance problem in time-series data. 

3. Reinforcement Learning (RL): This paradigm, which includes Deep Reinforcement Learning (DRL) 

and Q-Learning, is specialized for solving sequential decision tasks. It is highly suitable for real-time 

optimization, control, and autonomous decision-making in dynamic energy environments [16-19] 

3. Core Applications of AI in Renewable Energy Generation 

3.1. Wind Energy Systems 

3.1.1. Advanced Forecasting Models for Wind Power Output 

Accurate prediction of wind power supply and subsequent demand is vital for integrating stochastic renewable 

energy sources into the grid and for optimizing energy management systems [19-21]. The development of reliable 
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forecasting models requires rigorous data preparation to handle the complexity and inherent stochastic factors, 

such as equipment failures, which often lead to noise, outliers, and missing values in collected wind data [22]. 

Comparative studies illustrate the varied efficacy of different algorithmic approaches based on the chosen 

performance metrics. In one analysis, the Support Vector Machine (SVM) model demonstrated superior 

performance in prediction accuracy, achieving the lowest Mean Absolute Error (MAE) of 20.4 kW and Root Mean 

Square Error (RMSE) of 29.8 kW. Crucially, the model yielded a high Coefficient of Determination of 0.93, 

indicating that it could explain 93% of the variability in wind power output.10 In contrast, a separate investigation 

focusing on regression performance found that Random Forest Regression achieved the lowest Mean Squared 

Error (MSE) score of 0.1102, narrowly surpassing the Long Short-Term Memory (LSTM) time series analysis 

score of 0.1171 [17]. 

This contradiction, where different studies identify distinct "best" models based on metrics such as  versus MSE, 

highlights a critical challenge in methodological standardization. The selection of an evaluation metric 

fundamentally influences model assessment; for instance, RMSE penalizes larger errors more heavily than MAE.9 

Therefore, the choice of the optimal forecasting model often depends entirely on the operational priority of the 

stakeholder—whether the focus is on minimizing the financial or operational impacts associated with large power 

spike prediction errors (favoring RMSE) or minimizing overall average deviation (favoring MAE) [22-23]. 

3.1.2. Turbine Predictive Maintenance and Anomaly Detection 

AI enables a fundamental shift in wind turbine operation from reactive maintenance to optimized predictive 

maintenance (PdM) through the rigorous analysis of Supervisory Control and Data Acquisition (SCADA) and 

sensor data.24 Machine learning techniques are applied extensively to analyze turbine sensor data, signaling 

anomalous measurements that precede potential component failures [24]. 

Deep Learning models, particularly LSTMs and SVMs, are proven tools for predicting maintenance needs, 

including failures in unsupervised components of offshore wind turbines [25]. The implementation process 

involves critical initial steps, including the careful partitioning of the dataset into training, validation, and test sets, 

along with comprehensive feature scaling and extraction processes designed to normalize input variables and 

mitigate the detrimental effects of redundant information.22 The capability to predict wind turbine failure days in 

advance has profound economic implications. By enabling early detection, these advanced computational methods 

transform maintenance economics by allowing operators to transition from costly, unscheduled downtime and 

repairs to optimized, planned servicing. This directly translates to significant reductions in operational expenditure 

(OPEX) and improved annual capacity factors. 

3.1.3. Optimization of Wind Farm Layout and Wake Effect Mitigation 

Optimizing the layout and placement of wind turbines within a designated area, known as Wind Farm Layout 

Optimization (WFLO), is complex due to the "wake effect"—the aerodynamic interaction wherein the turbulence 

created by upstream turbines reduces the efficiency and power output of downstream units [26]. AI techniques 

provide a powerful solution to this optimization challenge. Algorithms based on Artificial Neural Networks (ANNs) 

are used to model and optimize turbine spacing and layout [27]. Quantifiable results demonstrate the efficacy of 

this approach: ANN-based wake models enhance design simulations, yielding a 40% speed increase compared to 

traditional Computational Fluid Dynamics (CFD) methods. Moreover, optimizing the plant layout has been shown 

to reduce the overall area required for the farm by an average of 18% per plant. The acceleration of design 

simulations afforded by the 40% speed increase provides a critical competitive advantage during the capital 

expenditure (CAPEX) phase of development, significantly reducing engineering time and speeding up project 

approval and deployment timelines. 

3.2. Solar Photovoltaic (PV) Systems 

3.2.1. Solar Irradiance and PV Power Forecasting 

Forecasting the output of Solar Photovoltaic (PV) systems relies on analyzing historical time-stamped data of solar 

radiation using time-series analysis models. The objective is to increase the accuracy and performance of 

predictions to support grid management [9]. Deep Neural Networks (DNNs) are widely favored in this domain. 

Architectures such as CNNs, DBNs, and LSTMs are robust tools for forecasting, primarily due to their superior 
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capability in feature extraction and their ability to capture complex non-linear patterns and long-term dependencies 

in the data [19]. Recent research highlights the development of Hybrid Deep Neural Networks (HDNNs), which 

leverage the combined strengths of CNN (for extracting spatial data characteristics, such as cloud movement) and 

LSTM (for handling long-term temporal sequence dependencies). This hybrid approach has demonstrated superior 

performance in short-term solar PV power prediction. Comparative performance studies are critical for model 

selection. Random Forest and XGBoost algorithms consistently appear as reliable ML models for forecasting. For 

instance, Random Forest recorded robust metrics, including an average R-squared value of 0.89 and an RMSE of 

0.28, across prediction intervals ranging from 30 minutes to 24 hours [11]. However, predictive accuracy is highly 

sensitive to the forecasting horizon: the highest accuracy was recorded at the 30-minute prediction window (up to 

0.9890), demonstrating the decreasing reliability of models as the time horizon extends. 

3.2.2. Input Data Integration and Complexity 

Modern solar forecasting necessitates the integration of diverse, complex data inputs beyond simple 

meteorological readings. Advanced techniques combine All-Sky Imagery (ASI), satellite observations, and 

Numerical Weather Prediction (NWP) data [4]. Deep Convolutional Neural Networks (CNNs) are employed to 

process satellite images, and their outputs are subsequently combined with meteorological "cloud factors" via a 

multilayer perceptron to significantly improve solar irradiance forecasts. Furthermore, identifying and analyzing 

key influencing factors, such as specific weather patterns, geographical location, and shading, enables a more 

precise forecast of energy generation and optimization of system management strategies. 

3.2.3. Fault Detection and Diagnosis in PV Arrays 

AI applications extend beyond forecasting to include critical operational control, notably fault detection and 

diagnosis within PV arrays. Machine learning algorithms are used to classify system health, frequently employing 

thermal images collected from PV panels [29]. A hybrid feature dataset combined with an SVM algorithm achieved 

a testing accuracy of 92% in classifying PV panels into three states: healthy, non-faulty hotspot, and faulty.29 The 

measurable impact of these AI-driven systems is substantial, achieving an 85% defect detection rate and correlating 

with a quantifiable 15-20% enhancement in energy efficiency [30]. This deployment of AI in fault detection 

demonstrates a crucial shift from purely predictive analysis to actively enhancing operational efficiency and defect 

handling, which directly results in higher overall system yield and extended component longevity. 

4. AI for System Integration and Energy Management 

4.1. Intelligent Smart Grid Management and Stability 

4.1.1. Real-time Monitoring and Load Forecasting 

The smart grid (SMG) represents an intelligent, automated energy network that uses digital technology, IoT 

sensors, and AI-driven analytics to monitor, analyze, and optimize electricity distribution in real time. Unlike 

traditional grids, smart grids facilitate two-way communication and possess self-healing capabilities, which are 

essential for the integration of highly variable renewable energy sources [31]. Trustworthy short-term load and 

renewable energy forecasting are paramount for maximizing energy storage utilization and ensuring the effective 

use of generated renewable resources. Machine Learning models analyze historical load data, satellite imagery, 

and real-time meteorological inputs to refine these predictions. Deep Learning techniques such as CNNs and 

LSTMs, alongside conventional regression models, are mostly utilized for these forecasting tasks [3]. The 

effectiveness of these AI-powered systems is quantitatively established: for example, one implementation using 

AI demonstrated a 20% improvement in wind energy forecasts [31]. 

4.1.2. Dynamic Energy Optimization via Reinforcement Learning (RL) 

Reinforcement Learning (RL) is particularly well-suited to address the complex optimization and control 

challenges in sustainable energy systems because it is designed to solve sequential decision tasks. RL models 

optimize the dynamic dispatch of diverse energy sources and storage assets. These techniques enable autonomous 

control systems, such as intelligent HVAC regulation, to learn optimal operational policies through iterative 

interaction with their environment. The objective is to dynamically minimize energy usage without compromising 

service quality [2,10,12]. 
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In a real-time optimization scenario, RL models demonstrated competitive predictive performance, recording an 

RMSE of 165.2 kWh and an  score of 0.91. This performance profile validates the utility of RL models in real-

time control environments, such as smart grid response systems and dynamic energy management, where adaptive 

learning is crucial for maintaining performance thresholds while achieving optimization objectives. RL’s unique 

characteristics, including learning via trial and error and optimizing for delayed rewards, enable it to achieve high 

accuracy (up to 99.98% in some optimized systems) compared to typical supervised methods [32]. 

4.2. Battery Energy Storage System (BESS) Optimization 

4.2.1. RL Frameworks for Charge/Discharge Strategy 

As the penetration of renewable generation increases, the integration of grid-scale energy storage, such as 

expensive Lithium-ion (Li-ion) Battery Energy Storage Systems (BESSs), becomes necessary for services like 

load shifting, frequency regulation, and grid stabilization [33]. Maximizing the financial and operational value of 

these expensive assets requires advanced management strategies. Reinforcement Learning algorithms provide a 

robust methodological solution for this task. Model-free RL techniques, such as Q-learning, are used to derive 

optimal control policies. The RL agent interacts dynamically with the microgrid or energy market, making 

automated decisions (charge, discharge, or remain idle) by learning the optimal state-action value function. Key 

environmental inputs driving these decisions include real-time energy demand, available renewable generation, 

and the current Battery State of Charge (SoC) [34,35]. 

4.2.2. Quantitative Impacts of Optimized BESS Operation 

Simulation results comparing RL-optimized hybrid energy storage systems against baseline models demonstrate 

substantial, multi-dimensional benefits [36]. The optimized operation strategies achieved significant 

improvements in sustainability, cost efficiency, and utilization: 

• Reduction in carbon emissions: 78.69%. 

• Improvement in cost savings: 23.5%. 

• Enhanced renewable energy utilization: over 13.2%. 

These strong quantitative metrics provide the robust economic justification required for the significant capital 

investment associated with large-scale energy storage. Advanced AI management is therefore the critical enabling 

technology that transitions BESS technology from a technical possibility to a financially viable operational 

necessity in the modern power system. 

4.3. Comparative Performance Analysis of AI Algorithms 

A wide array of AI algorithms is deployed across the renewable energy sector. Tree-based algorithms like Random 

Forest (RF) and Gradient Boosting Regressors (GBR) are frequently chosen for their operational efficiency and 

robustness, offering strong baselines often compared against Deep Learning techniques. To consolidate the 

comparative findings across different domains and computational models, the following tables summarize key 

performance metrics and taxonomic classifications derived from the literature. 

Table 1: Comparative Performance Metrics in Energy Forecasting and Optimization 

Algorithm Application Domain 
Key 

Metric 
Value Insight References 

LSTM 
Energy Consumption 

Forecasting 
 Score 0.93 

Best at capturing 

long-term temporal 

dependencies 

12 

Support Vector 

Machine 

(SVM) 

Wind Power 

Forecasting 
 Score 0.93 

Achieved highest 

prediction accuracy 

in tested wind 

models 

10 
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Random Forest 

(RF) 

Solar PV Forecasting 

(GHI) 

R-

squared 
0.89 

Reliable ML 

baseline model 

across various 

forecasting 

intervals 

11 

Random Forest 

(RF) 

Wind Power 

Regression 
MSE 0.1102 

Recorded the best 

Mean Squared 

Error score among 

tested regression 

models 

17 

XGBoost 
Energy Consumption 

Forecasting 

RMSE 

(kWh) 
174.1 

Strong predictive 

performance, high 

interpretability via 

SHAP 

12 

Reinforcement 

Learning (RL) 

Energy 

Optimization/Control 
Score 0.91 

Effective in 

generating optimal 

policies for real-

time control 

scenarios 

12 

 

 

Table 2: Taxonomy of AI Applications and Techniques Across Renewable Energy Sectors 

Energy 

Sector 

Primary 

Application 

Dominant AI 

Techniques 
Key Function/Goal References 

Wind 

Energy 

Predictive 

Maintenance 

DL, SVM, 

Anomaly Detection 

SCADA data analysis, early 

warning failure prediction 
24 

Solar PV 
Power 

Forecasting 

HDNN 

(CNN+LSTM), 

ANNs, RF 

Improved irradiance and 

output prediction using 

spatial-temporal modeling 

4 

Wind 

Energy 

Layout 

Optimization 

ANN-based Wake 

Models 

Maximizing energy yield, 

40% simulation speed 

increase 

27 

Smart 

Grids/BESS 

Energy 

Management 

DRL, Q-Learning, 

Multi-Agent 

Systems 

Dynamic 

charging/discharging, grid 

stability, 23.5% cost reduction 

2 

Solar PV 
Fault 

Detection 

SVM, Image 

Classification 

Defect detection (85% rate), 

15–20% energy efficiency 

enhancement 

29 
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5. Critical Analysis: Challenges, Limitations, and Economic Feasibility 

5.1. Data Interoperability, Quality, and Consistency 

Despite the rapid advancements in AI algorithms, the widespread adoption of AI in the energy sector faces 

fundamental barriers related to data. Data availability and quality remain critical obstacles, largely because energy 

sectors often lack standardized and interoperable datasets necessary for training generalized models.7 

Furthermore, methodological rigor in research is frequently compromised by inconsistencies in training protocols. 

The necessity of using consistent training data is paramount to ensure fair and reliable comparisons between 

different machine learning methods [28]. Studies that violate this principle—for example, by training one model 

(such as a CNN) on a substantially larger dataset (e.g., 24 months) than others (e.g., 12 months)—yield unrealistic 

and unreliable results, fundamentally undermining the integrity of comparative scientific findings [28]. This 

prevalence of non-standardized datasets and inconsistent training protocols inhibits reliable meta-analysis and 

hinders the transition of validated models from research environments to industrial deployment. Consequently, 

prioritizing improvements in the scientific reporting and data provenance is as essential for advancing the field as 

developing novel algorithmic architectures. 

5.2. Computational Resource Demand and Environmental Footprint of AI 

The growth of Artificial Intelligence generates a substantial energy demand, leading to the dictum that there is "no 

AI without energy," specifically electricity for data centers [16]. The high computational costs associated with 

training and running large-scale AI models pose a significant operational obstacle to widespread sustainable 

adoption.7 Policy makers and stakeholders often lack the comprehensive tools needed to analyze both the 

optimization potential and the energy demand side of AI concurrently [16]. Addressing this requires a systematic 

approach to evaluating the energy consumption of ML at both the training and inference stages [37]. Researchers 

are actively developing methods to mitigate these costs, including techniques such as structured pruning, which 

involves removing whole filters or channels from deep neural networks to optimize memory consumption while 

maintaining performance [38]. Furthermore, experimentation with different quantization settings (e.g., 32 bits vs. 

16 bits) during the fine-tuning phase is essential for reducing the computational footprint of deployed models [38]. 

5.3. Cybersecurity, Regulatory, and Ethical Concerns 

The integration of complex, real-time AI systems into critical infrastructure introduces significant operational risks. 

Cybersecurity vulnerabilities in smart grids, which rely on extensive digital communication, present a major 

challenge that must be addressed before widespread adoption [7]. Beyond technical risks, the proliferation of AI 

raises broader societal and ethical concerns. These include the potential for AI to exacerbate resource and energy 

use, contribute to job displacement, and be used to generate misinformation—for instance, downplaying the threat 

of climate change [39]. Despite these clear risks, a regulatory lag exists where governments, while racing to 

develop national AI strategies, often fail to incorporate environmental and sustainability guardrails. To address 

this, organizations recommend establishing standardized procedures for measuring AI's environmental impact and 

developing regulations that require companies to disclose the direct environmental consequences of AI-based 

products and services [40]. 

5.4. Economic Sustainability Development and Financial Impact of AI Adoption 

The economic case for AI adoption in energy systems is robust. The application of AI can boost productivity, 

accelerate decision-making through the analysis of vast amounts of data, and potentially create new goods and 

services, resulting in job growth (ESD-AI) [41]. The optimization provided by AI, such as the predicted reduction 

in capital investment through the rapid development of renewable energy and energy-efficient technologies [42], 

contributes significantly to overall sustainable growth [43]. 

AI-integrated Economic Sustainability Development (ESD) helps minimize costs and enhance profitability by 

facilitating the optimum use and recovery of resources [41]. The combination of AI and RES has been shown to 

contribute significantly to the environmental, social, and economic goals outlined in the 2030 Agenda for 

Sustainable Development [43]. It is, however, crucial to adopt a balanced approach that ensures AI systems 

effectively tackle sustainability challenges and minimize costs without inadvertently compromising other crucial 

economic or social aims, such as equitable access or mitigating job displacement [39]. 
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6. Conclusions 

Artificial intelligence has rapidly matured from a tool for static prediction to a complex system for dynamic control 

and operational optimization within the renewable energy landscape. Deep Learning techniques, notably Hybrid 

Deep Neural Networks (HDNNs) that combine CNN and LSTM architectures, successfully address the complex, 

non-linear challenges of solar and wind time-series forecasting. Simultaneously, Reinforcement Learning (RL) 

has defined the next generation of dynamic energy management, exemplified by the quantifiable substantial cost 

savings (23.5%) and environmental benefits (78.69% reduction in carbon emissions) achieved in Battery Energy 

Storage System (BESS) operations. Furthermore, AI-driven operational improvements, such as the 15-20% 

enhancement in energy efficiency through PV fault detection, underscore the vital role of computational 

intelligence in maximizing asset yield and longevity. 

The necessity of managing the high uncertainty inherent in RES generation drives the development of next-

generation hybrid AI models. Future advancements will integrate probabilistic modeling, fuzzy logic, and 

Bayesian inference with existing neural networks to enhance predictive accuracy and decision-making robustness 

under conditions of high variability. Furthermore, the conceptual shift toward "Agentic AI" suggests a future where 

energy infrastructure is managed by highly autonomous, self-learning systems.45 

Two specific methodological trajectories are emerging to address current limitations: 

• Transfer Learning: To overcome the critical dependence on massive, consistent datasets, transfer 

learning (reusing pre-trained RL models from similar domains, such as Electric Vehicle batteries) is being 

investigated. This approach has demonstrated a pathway to mitigate data scarcity and can improve real-

world policy performance by up to 18%. 

• Safe Reinforcement Learning (Safe RL): The exploratory nature of standard RL poses risks (e.g., 

battery overcharging, grid instability) during real-world implementation. The maturation of Safe RL 

techniques, including constrained policy optimization and the implementation of dynamic safety layers 

to respect physical limits (e.g., battery thermal constraints), is crucial for enabling the secure transition of 

RL systems from simulation to full-scale deployment. 

7. Future Research 

The literature indicates that the principal research frontier is transitioning from the refinement of individual 

algorithms to addressing the systemic and non-technical challenges of large-scale AI deployment. Future 

research must urgently focus on the following domains: 

• Standardization and Economic Viability: There is a critical need to establish standardization protocols 

for data collection, preprocessing, and model evaluation to close the methodological integrity gap.13 

Research must also investigate the economic viability and scalable implementation of these advanced AI 

systems specifically within emerging economies. 

• Systemic Resilience and Policy Integration: Future efforts must concentrate on achieving large-scale 

integration of AI systems, focusing on ensuring system resilience against faults and cyber threats.47 This 

must be accompanied by interdisciplinary studies that align AI-driven energy optimization with complex 

energy economics, policy regulations, and social equity considerations. 

• Decarbonization Roadmaps: A key applied direction is the creation of comprehensive, AI-based 

decarbonization roadmaps tailored for specific countries, regions, and island grids, leveraging the 

forecasting and optimization capabilities developed to date. 

This sustained systemic focus—addressing scalability, safety (via Safe RL), regulatory alignment, and social 

impact—is essential to realize the full promise of artificial intelligence in achieving a reliable and sustainable 

global energy transition. 
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