ISSN: 2582-5615

DOI: 10.36297/vw.applsci.v2i2.780

VW Applied Sciences, Volume: 2, Issue: 2, 06-11

Comprehensive Review of Sustainable Materials for Innovative Engineering Design and Structural Applications

Mukesh Dewan¹

¹Department of Mechanical Engineering, Tripura University, Agartala 799022, India

*Corresponding Authors Email: mukesheng67@yahoo.com,

Received: June 17, 2020 Accepted: June 18, 2020 Published online: June 19, 2020

Abstract: The growing demand for environmentally responsible engineering solutions has led to the increased integration of sustainable materials in design and structural applications. This review provides a comprehensive analysis of sustainable materials, focusing on their properties, performance, environmental impact, and applicability in innovative engineering contexts. The study categorizes materials into renewable resources (such as bamboo, hempcrete, and bio-based polymers), recycled materials (including recycled steel, plastics, and concrete), and advanced composites that incorporate sustainable elements. Emphasis is placed on life cycle assessment (LCA), carbon footprint reduction, and the balance between sustainability, structural integrity, and cost-effectiveness. Innovations in material processing, such as low-energy manufacturing and additive manufacturing techniques, are also discussed as key enablers of sustainable design. The review further explores case studies and real-world applications in civil, mechanical, and architectural engineering, highlighting successful implementations and challenges faced. By synthesizing current research and practical developments, this paper aims to guide engineers, designers, and policymakers toward the selection and use of sustainable materials that align with both environmental goals and engineering requirements. The findings underscore the critical role of interdisciplinary collaboration and innovation in accelerating the adoption of sustainable materials for future-ready, resilient, and eco-efficient structural systems.

Keywords: Sustainable materials, Structural applications, Life cycle assessment (LCA), Eco-efficient design, Innovative engineering

1. Introduction

Sustainability in engineering design has emerged as a crucial objective in addressing the environmental impact of construction and industrial practices. As industries expand and urbanization accelerates, the demand for construction materials continues to rise, contributing significantly to global carbon emissions, resource depletion, and environmental degradation.[1] The integration of sustainable materials in engineering design offers a pathway to reducing environmental footprints while maintaining or even enhancing structural performance. Sustainable materials are characterized by their renewable sourcing, recyclability, low embodied energy, and minimal environmental impact throughout their life cycle. These materials are increasingly being adopted in innovative engineering projects to achieve ecological balance, economic viability, and social responsibility. Innovative engineering design seeks to reconcile the performance demands of structures with sustainability principles. Materials such as high-performance concrete with recycled aggregates, bio-based composites, bamboo, and cross-laminated timber (CLT) are redefining structural applications by offering lightweight, durable, and low-carbon alternatives. Additionally, advancements in material science have introduced geopolymer concrete, recycled plastics, and nanomaterials that enhance mechanical properties while reducing environmental costs. These developments enable engineers to design structures that not only meet safety and durability requirements but also align with sustainability goals. The concept of sustainable materials extends beyond structural components to encompass the entire supply chain, including raw material sourcing, manufacturing processes, energy consumption, and end-of-life recycling.[2] Life Cycle Assessment (LCA) has become a critical tool in evaluating the environmental performance of materials, guiding engineers toward greener choices. Moreover, regulatory frameworks and green building standards such as LEED and BREEAM

have further incentivized the use of sustainable materials, fostering innovation across the construction and manufacturing sectors. This review explores recent advancements in sustainable materials, their applications in innovative engineering design, and the challenges associated with their adoption. It covers the scope and objectives of sustainable material development, key technologies and methods driving innovation, comparative analyses of traditional and modern materials, emerging trends, and future directions. By examining these aspects, the review aims to provide a comprehensive understanding of how sustainable materials contribute to engineering design and structural applications in the context of global sustainability goals as given in figure 1.

Fig. 1 comprehensive review of sustainable materials

2. Scope and Objectives of the Review

The scope of this review encompasses sustainable materials that are shaping the future of engineering design and structural applications. It includes materials derived from renewable resources, recycled products, and advanced composites that exhibit superior performance while minimizing environmental impact.[3] The review focuses on their mechanical properties, durability, energy efficiency, and life-cycle sustainability. It also considers how these materials contribute to structural integrity, cost-effectiveness, and compliance with environmental regulations. The primary objective of this review is to highlight the innovations and developments in sustainable materials and their transformative impact on engineering practices. By analyzing current research and practical applications, the review aims to identify materials that offer the greatest potential for widespread adoption. Additionally, it seeks to evaluate how these materials address key challenges in construction and manufacturing, such as carbon emissions, waste management, and resource scarcity. Another objective is to explore the methodologies and technologies that enable the development and optimization of sustainable materials. This includes advanced material processing techniques, additive manufacturing, nanotechnology, and bioengineering approaches that enhance material performance while maintaining sustainability. Furthermore, the review aims to examine the integration of these materials into engineering designs that meet structural requirements, environmental regulations, and economic constraints. Finally, the review seeks to outline future research directions, including the need for standardized testing, long-term performance monitoring, and the development of policies that encourage innovation in sustainable materials. By achieving these objectives, the review provides valuable insights for researchers, engineers, and policymakers working toward sustainable engineering solutions

3. Key Technologies and Methods

The advancement of sustainable materials in engineering design is largely driven by innovations in material science and technology. Among the most promising developments are bio-based materials, recycled composites, geopolymer binders, and advanced high-performance materials that reduce reliance on traditional, resourceintensive options.[4] Bio-based materials, such as bamboo, hemp, and cross-laminated timber (CLT), have gained popularity due to their renewable nature, carbon sequestration capabilities, and high strength-to-weight ratios. Bamboo, for example, grows rapidly, has tensile strength comparable to steel, and is widely used in structural applications ranging from bridges to housing frameworks. CLT offers excellent load-bearing properties and has been adopted in high-rise timber construction, reducing the carbon footprint of buildings while offering design flexibility. Hempcrete, made from hemp fibers and lime, provides excellent insulation properties and low embodied energy, contributing to energy-efficient building envelopes. Recycled materials also play a vital role in sustainable engineering.[5] Recycled aggregates from construction and demolition waste are now widely used in concrete production, reducing landfill disposal and conserving natural resources. Recycled plastics are being transformed into structural composites, decking materials, and even modular building components. These materials not only divert plastic waste from the environment but also exhibit durability and resistance to moisture and pests. Furthermore, steel and aluminum, known for their recyclability, are being increasingly incorporated into designs with high recycled content, reducing energy consumption associated with virgin material production. Geopolymer concrete has emerged as an environmentally friendly alternative to Portland cement concrete, which is responsible for approximately 8% of global CO2 emissions. Geopolymers utilize industrial byproducts such as fly ash and slag, reducing reliance on clinker and significantly lowering carbon emissions. These materials demonstrate excellent mechanical performance, resistance to chemical attack, and durability under extreme conditions, making them suitable for infrastructure projects. Nanotechnology is transforming the properties of sustainable materials by enhancing strength, durability, and self-healing capabilities. Nano-silica and carbon nanotubes are being incorporated into concrete to improve its microstructure, leading to higher compressive strength and reduced permeability. Nanocoatings are also used to enhance the durability of timber and steel, protecting them from environmental degradation without harmful chemicals. Additive manufacturing (3D printing) is another groundbreaking method that minimizes material waste while enabling complex and optimized structural designs. 3D-printed concrete structures use tailored mixtures that incorporate recycled aggregates and industrial byproducts, significantly reducing waste and construction time. This technology also allows for the creation of lightweight structures with optimized geometries, reducing material usage while maintaining strength. Advanced composites, including fiberreinforced polymers (FRPs) and bio-composites, are increasingly being used in bridges, facades, and reinforcement applications. FRPs offer high strength, corrosion resistance, and lightweight properties, making them ideal for retrofitting aging infrastructure. Bio-composites, derived from natural fibers and biodegradable resins, provide similar benefits while being environmentally friendly. Life Cycle Assessment (LCA) tools are critical in evaluating the sustainability of these materials. By analyzing energy consumption, emissions, and environmental impacts from production to disposal, LCA helps engineers make informed material choices. Building Information Modeling (BIM) combined with LCA further enhances decision-making by integrating material performance data into design workflows. Collectively, these technologies and methods represent a paradigm shift in engineering design, enabling the creation of structures that are not only high-performing but also environmentally responsible. Ongoing research continues to push the boundaries of material performance, opening new possibilities for sustainable innovation.

4. Comparative Analysis of Literature

Comparative literature on sustainable materials reveals significant differences in performance, cost, and environmental impact compared to traditional materials.[6] Studies consistently show that bio-based materials such as bamboo and CLT outperform conventional timber and steel in terms of carbon sequestration and environmental benefits. For example, recent research demonstrated that bamboo-reinforced concrete beams offer similar load-bearing capacity to steel-reinforced beams while reducing the carbon footprint by up to 30%.

Similarly, geopolymer concretes have been extensively compared to Portland cement-based concretes. Literature reviews indicate that geopolymer concretes not only exhibit superior resistance to sulfate and acid attacks but also reduce CO2 emissions by 40-80%. However, their widespread adoption is hindered by challenges in standardization, curing requirements, and long-term performance data. Recycled materials also show mixed results in comparative studies. While recycled aggregates can replace up to 30% of natural aggregates without significant loss of strength, higher replacement ratios often lead to reduced mechanical performance. Innovations in aggregate processing and the use of supplementary cementitious materials have been proposed to mitigate these drawbacks. Recycled plastics, although less structurally robust than traditional materials, excel in nonload-bearing applications and have found niche uses in modular construction. Comparisons between FRPs and conventional steel reinforcement highlight that FRPs offer superior corrosion resistance and durability, especially in marine and chemically aggressive environments. However, high production costs and limited recyclability remain concerns.[7] Bio-composites, on the other hand, strike a balance between performance and sustainability, with ongoing research aimed at improving their mechanical properties. Overall, literature comparisons underscore the potential of sustainable materials to meet or exceed the performance of traditional options while delivering significant environmental benefits. The findings also emphasize the importance of continued research to overcome barriers to adoption, such as cost, standardization, and long-term durability.

5. Recent Trends and Advancements

Recent trends in sustainable materials highlight the growing integration of advanced technologies and ecofriendly practices in engineering design. One notable trend is the commercialization of high-performance biobased materials. CLT has gained international recognition, with tall timber buildings such as the Mjøstårnet in Norway and Ascent in the United States showcasing its structural viability. Similarly, bamboo composites are being engineered for enhanced durability, expanding their applications beyond traditional uses. Geopolymer technology continues to evolve, with new formulations enabling ambient curing and improved workability. These advancements make geopolymer concrete more practical for large-scale applications. Researchers are also exploring the incorporation of agricultural waste, such as rice husk ash and sugarcane bagasse, into geopolymer matrices, further reducing environmental impact. Nanotechnology-driven innovations, including self-healing concrete and photocatalytic coatings, are enhancing material durability and functionality. Self-healing concretes use encapsulated bacteria or polymers that activate when cracks form, extending service life and reducing maintenance costs. Photocatalytic coatings on building facades not only improve air quality by breaking down pollutants but also keep surfaces clean, reducing maintenance

requirements. Additive manufacturing is gaining momentum in sustainable construction. Projects involving 3D-printed houses using recycled concrete mixtures demonstrate significant reductions in material waste and construction time. These developments align with circular economy principles by reusing materials and minimizing environmental footprints. Policy and certification frameworks are also influencing trends. Green building certifications encourage the use of materials with low embodied carbon and high recyclability. Governments are investing in research to develop sustainable alternatives and providing incentives for adopting green materials in public infrastructure projects. Industry collaborations are accelerating innovation. Partnerships between universities, private companies, and regulatory bodies are producing breakthroughs in bio-composite materials and energy-efficient manufacturing processes. For example, collaborations have led to bio-resins with improved mechanical performance and reduced environmental impact, making bio-composites more competitive. These trends indicate a strong shift toward materials that not only meet structural demands but also contribute to broader sustainability goals. The combination of advanced technology, regulatory support, and market demand is driving the rapid evolution of sustainable materials in engineering.

6. Future Directions

The future of sustainable materials in engineering design lies in the convergence of advanced material science, digital technologies, and sustainability frameworks. One key direction is the development of smart materials that can adapt to changing environmental conditions. Self-sensing and self-healing materials will enhance structural

safety and longevity while reducing maintenance costs. Integrating sensors into materials could enable real-time monitoring of structural health, providing valuable data for predictive maintenance. Further research is needed to improve the mechanical properties and durability of bio-based and recycled materials, enabling their use in more demanding structural applications. Advances in polymer chemistry and fiber treatment are expected to enhance the performance of bio-composites, making them competitive with synthetic composites. Circular economy principles will shape the next generation of sustainable materials. Designing materials for easy disassembly, recycling, and reuse will minimize waste and resource consumption. 3D printing using fully recyclable feedstocks is expected to play a significant role in achieving this goal. Digital tools such as Building Information Modeling (BIM) integrated with Life Cycle Assessment (LCA) will become standard practice, enabling designers to evaluate the environmental impact of materials at every stage of a project. This data-driven approach will facilitate more informed decisions and support compliance with sustainability standards. Policy development will be crucial in promoting sustainable materials. Governments should establish clear regulations, provide incentives for using low-carbon materials, and invest in research and development. International collaboration is essential to harmonize standards and accelerate innovation. Finally, education and training will play a vital role in preparing engineers and architects to adopt sustainable materials and innovative design approaches. By fostering interdisciplinary collaboration and encouraging innovation, the engineering community can drive the widespread adoption of sustainable practices.

7. Summary

Sustainable materials are redefining engineering design and structural applications by combining high performance with environmental responsibility. Innovations in bio-based materials, recycled composites, geopolymer concretes, nanomaterials, and additive manufacturing have expanded the possibilities for creating structures that are both resilient and eco-friendly. Life Cycle Assessment and digital design tools further support the selection of materials that minimize environmental impact. Comparative analyses of literature confirm that sustainable materials can match or surpass traditional materials in many aspects, offering benefits such as carbon sequestration, reduced emissions, and enhanced durability. However, challenges such as high costs, lack of standardization, and limited long-term performance data hinder broader adoption. Recent trends demonstrate significant progress in commercializing advanced sustainable materials, integrating nanotechnology and 3D printing, and aligning with circular economy principles. Policy frameworks, green building certifications, and industry collaborations are accelerating this transformation, signaling a future where sustainable materials become mainstream. Looking ahead, research must focus on enhancing material properties, integrating smart functionalities, and supporting circularity. Policy support, digital integration, and interdisciplinary collaboration will be key to scaling up the use of sustainable materials. Through these efforts, sustainable engineering will contribute to global efforts to combat climate change, reduce resource consumption, and build a resilient future.

References

- 1. Chau, C. K., Leung, T. M., & Ng, W. Y. (2015). A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions assessment on buildings. Applied Energy, 143, 395-413. https://doi.org/10.1016/j.apenergy.2015.01.023
- 2. Asif, M., & Muneer, T. (2007). Energy supply, its demand and security issues for developed and emerging economies. Renewable and Sustainable Energy Reviews, 11(7), 1388-1413. https://doi.org/10.1016/j.rser.2005.12.004
- 3. Zhou, Z., et al. (2019). Review of bamboo structural materials: Performance and application. Construction and Building Materials, 209, 713-72. https://doi.org/10.1016/j.conbuildmat.2019.03.154 Davidovits, J. (2015). Geopolymer chemistry and applications. Geopolymer Institute.https://www.geopolymer.org/library/technical-papers/
- 4. Pickering, K. L., Efendy, M. G. A., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, 98-112. https://doi.org/10.1016/j.compositesa.2015.08.038

- 5. Labonnote, N., Rønnquist, A., Manum, B., & Rüther, P. (2016). Additive manufacturing in the construction industry: A review. Automation in Construction, 72, 347-366. https://doi.org/10.1016/j.autcon.2016.08.026
- 6. LEED. (2025). Leadership in Energy and Environmental Design. https://www.usgbc.org/leed
- 7. BREEAM. (2025). Building Research Establishment Environmental Assessment Method. https://www.breeam.com/

© 2020 by the authors. Open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/)